Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T17:48:00.448Z Has data issue: false hasContentIssue false

Molecular systematics in the acanthocephalan genus Echinorhynchus (sensu lato) in northern Europe

Published online by Cambridge University Press:  06 April 2009

R. Väinölä
Affiliation:
Department of Genetics, P.O. Box 17 (Arkadiankatu 7), SF-00014University of Helsinki, Finland
E. T. Valtonen
Affiliation:
Department of Biology, University of Jyväskylä, Seminaarinkatu 15, SF-40100 Jyväskylä, Finland
D. I. Gibson
Affiliation:
Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K.

Summary

New biological species and high levels of inter- and intraspecific genetic divergence were discovered in an allozyme study of some North European members of the acanthocephalan genus Echinorhynchus (sensu lato), parasites of fish and malacostracan crustaceans. (i) A strong differentiation between the marine E. gadi and the fresh- and brackish-water E. salmonis (genetic identity I ≃ 0) supports a generic distinction between these taxa; however, the subdivision would not entirely concur with the concepts of Echinorhynchus (sensu stricto) and Metechinorhynchus suggested earlier. (ii) Samples of E. gadi from the Baltic, Norwegian and North Seas included three distinct, partially sympatric biological species (spp. I–III; I ≃ 0·5). (iii) E. bothniensis, previously only known from the northern Baltic Sea, represents a complex of freshwater taxa with an intermediate host relationship to the ‘glacial relict’ Mysis spp. and with a distributional and host analogy to the North American E. leidyi. A population in a northern lake in the Barents Sea basin is closely related to E. bothniensis of the Baltic area, but is probably specifically distinct; the divergence between these populations (I ≃ 0·6) is similar to that between their Mysis host species. (iv) Considerable intraspecific differentiation (Fst = 0·25), probably reflecting post-glacial population bottlenecks, was found between Baltic and nearby lacustrine E. bothniensis, and between Atlantic and Baltic E. gadi sp. I.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aho, J. M., Mulvey, M., Jacobson, K. C. & Esch, G. W. (1992). Genetic differentiation among congeneric acanthocephalans in the yellow-bellied slider turtle. Journal of Parasitology 78, 974–81.Google Scholar
Amin, O. A. (1985). Classification. In Biology of the Acanthocephala (ed. Crompton, D. W. T. & Nickol, B. B.), pp. 2771. Cambridge: Cambridge University Press.Google Scholar
Amin, O. A. & Redlin, M. J. (1980). The effect of host species on growth and variability of Echinorhynchus salmonis Müller, 1784 (Acanthocephala: Echinorhynchidae), with special reference to the status of the genus. Systematic Parasitology 2, 920.CrossRefGoogle Scholar
Aura, R. -L., Valtonen, E. T. & Andersin, A-B. (1990). On the acanthocephalan infection in some glacial relict crustaceans in Finland. Annales Zoologici Fennici 27, 245.Google Scholar
Avala, F. J., Valentine, J. W., Barr, L. G. & Zumwalt, G. S. (1974). Genetic variability in a temperate intertidal phoronid, Phoronopsis viridis. Biochemical Genetics 11, 413–27.Google Scholar
Baverstock, P. R., Adams, M. & Beveridge, I. (1985). Biochemical differentiation of bile duct cestodes and their marsupial hosts. Molecular Biology and Evolution 2, 321–37.Google Scholar
Bodaly, R. A., Vuorinen, J., Ward, R. D., Luczynski, M. & Reist, J. D. (1991). Genetic comparisons of New and Old World coregonid fishes. Journal of Fish Biology 37, 3851.Google Scholar
Brooks, D. R. (1989). Coevolution of helminths and vertebrates. In Current Concepts in Parasitology (ed. Ko, R. C.), pp. 255267. Hong Kong: University of Hong Kong Press.Google Scholar
Clayton, J. W. & Tretiak, D. N. (1972). Amine-citrate buffers for PH-control in starch gel electrophoresis. Journal of the Fisheries Research Board of Canada 29, 1169–72.CrossRefGoogle Scholar
Dadswell, M. J. (1974). Distribution, ecology, and post-glacial dispersal of certain crustaceans and fishes in eastern North America. National Museum of Natural Sciences (Ottawa), Publications in Zoology 11, 1110.Google Scholar
De Buron, I., Renaud, F. & Euzet, L. (1986). Speciation and specificity of acanthocephalans. Genetic and morphological studies of Acanthocephaloides geneticus sp. nov. parasitizing Arnoglossus laterna (Bothidae) from the Mediterranean littoral (Séte, France). Parasitology 92, 165–71.Google Scholar
Golvan, Y. J. (1969). Systématique des acanthocéphales (Acanthocephala Rudolphi 1801). I. L'ordre des Palæacanthocephala Meyer 1931. 1. La super-famille des Echinorhynchoidea (Cobbold 1876) Golvan et Houin 1963. Mémoires du Museum National d’Histoire Naturelle, Série A 57, 1373.Google Scholar
Grabda-Kazubska, B. & Chubb, J. C. (1968). Acanthocephalus – the correct generic name for Echinorhynchus clavula Dujardin, 1845 (Acanthocephala). Acta Parasitologica Polonica, 40, 305–11.Google Scholar
Hafner, M. S. & Nadler, S. A. (1988). Phylogenetic trees support the coevolution of parasites and their hosts. Nature, London 332, 258–9.Google Scholar
Hilbish, T. J. & Koehn, R. K. (1985). The physiological basis of natural selection at the Lap locus. Evolution 39, 1302–17.CrossRefGoogle ScholarPubMed
Huffman, D. G. & Kliever, R. G. (1977). Echinorhynchus canyonensis sp. n. (Acanthocephala) from Maynea californica (Osteichthyes: Zoarcidae) from the Monterey Submarine Canyon, California. Proceedings of the Helminthological Society of Washington 44, 171–6.Google Scholar
Johnson, L. (1964). Marine-glacial relicts of the Canadian Arctic islands. Systematic Zoology 13, 7691.CrossRefGoogle Scholar
Meyer, A. (1933). Dr. H. G. Bronns Klassen und Ordnungen des Tierreichs. 4. Band, 2. Abt., 2. Buch. Acanthocephala. Leipzig: Akademische Verlagsgesellschaft M.B H.Google Scholar
Mork, J., Ryman, N., Ståhl, G., Utter, F. & Sundnes, G. (1985). Genetic variation in Atlantic cod (Gadus morhua) throughout its range. Canadian Journal of Fisheries and Aquatic Sciences 42, 1580–7.CrossRefGoogle Scholar
Munro, M. A., Reid, A. & Whitfield, P. J. (1990). Genomic divergence in the ecologically differentiated English freshwater and marine strains of Pomphorhynchus laevis (Acanthocephala: Palæacanthocephala): a preliminary investigation. Parasitology 101, 451–4.Google Scholar
Murphy, R. W., Sites, J. W. Jr., Buth, D. G. & Haufler, C. H. (1990). Proteins I: Isozyme electrophoresis. In Molecular Systematics (ed. Hillis, D. M. & Moritz, C.), pp. 45126. Sunderland: Sinauer Associates.Google Scholar
Nadler, S. A. (1990). Molecular approaches to studying helminth population genetics and phylogeny. International Journal for Parasitology 20, 1129.CrossRefGoogle ScholarPubMed
Nascetti, G., Paggi, L., Orecchia, P., Smith, J. W., Matiucci, c. & Bullini, L. (1986). Electrophoretic studies on the Anisakis simplex complex (Ascaridida: Anisakidae) from the Mediterranean and North-East Atlantic. International Journal for Parasitology 16, 633–40.Google Scholar
Nei, M. (1987). Molecular Evolutionary Genetics. New York: Columbia University Press.CrossRefGoogle Scholar
Nybelin, O. (1924). Zur postembryonalen Entwicklungsgeschichte der Acanthocephalen. II. Zoologisches Anzeiger 61, 190–3.Google Scholar
Petrochenko, V. I. (1956). [Acanthocephala of domestic and wild animals.] Vol. I. Moscow1: Izdatelstvo Akademii Nauk SSSR. (English translation: 1971, Jerusalem: Israel Program for Scientific Translation.)Google Scholar
Prychitko, S. B. & Nero, R. W. (1983). Occurrence of the acanthocephalan Echinorhynchus leidyi (Van Cleave, 1924) in Mysis relicta. Canadian Journal of Zoology 61, 460–2.CrossRefGoogle Scholar
Renaud, F. & Gabrion, C. (1988). Speciation of Cestoda. Evidence for two sibling species in the complex Bothrimonus nylandicus (Schneider 1902) (Cestoda: Cyathocephalidea). Parasitology 97, 139–47.Google Scholar
Ristaniemi, O. (1987). The highest shore and Ancylus limit of the Baltic Sea and the Ancient Lake Päijännein Central Finland. Annales Universitatis Turkuensis, Series C 59, 1102.Google Scholar
Rudolrhi, C. A. (1809). Entozoorum Sive Vermimum Intestinalium Historia Naturalis. Vol. II, Part 1. Amsterdam.Google Scholar
Schmidt, G. D. (1985). Development and life cycles. In Biology of the Acanthocephala (ed. Crompton, D. W. T. & Nickol, B. B.), pp. 273305. Cambridge: Cambridge University Press.Google Scholar
Segerstråle, S. G. (1957). On the immigration of the glacial relicts of Northern Europe, with remarks on their prehistory. Societas Scientiarum Fennica, Commentationes Biologicae 16, 1117.Google Scholar
Shaklee, J. B., Allendorf, F. W., Morizot, D. C. & Whitt, G. S. (1990). Gene nomenclature for protein-coding loci in fish. Transactions of the American Fisheries Society 119, 215.Google Scholar
Shostak, A. W., Dick, T. A., Szalai, A. J. & Bernier, L. M. J. (1986). Morphological variability in Echinorhynchus gadi, E. leidyi, and E. salmonis (Acanthocephala: Echinorhynchidae) from fishes in northern Canadian waters. Canadian Journal of Zoology 64, 985–95.CrossRefGoogle Scholar
Sick, K. (1965). Haemoglobin polymorphism of cod in the Baltic Sea and the Danish Belt Sea. Hereditas 54, 1948.Google Scholar
Thienemann, A. (1950). Verbreitungsgeschichte der Süsswassertierwelt Europas. Die Binnengewässer 28.Google Scholar
Thorpe, J. P. (1983). Enzyme variation, genetic distance and evolutionary divergence in relation to levels of taxonomic separation. In Protein Polymorphism: Adaptive and Taxonomic Significance (ed. Oxford, G. S. & Rollinson, D.), pp. 131152. London: Academic Press.Google Scholar
Väinölä, R. (1986). Sibling species and Phylogenetic relationships of Mysis relicta (Crustacea: Mysidacea). Annales Zoologici Fennici 23, 207–21.Google Scholar
Väinölä, R. & Varvio, S. -L. (1989). Molecular divergence and evolutionary relationships in Pontoporeia (Crustacea: Amphipoda). Canadian Journal of Fisheries and Aquatic Sciences 46, 1705–13.Google Scholar
Valtonen, E. T. & Crompton, D. W. T. (1990). Acanthocephala in fish from the Bothnian Bay, Finland. Journal of Zoology, London 220, 619–39.Google Scholar
Varvio, S.-L., Koehn, R. K. & Vainola, R. (1988). Evolutionary genetics of the Mytilus edulis complex in the North Atlantic region. Marine Biology 98, 5160.Google Scholar
Voigt, H. -R. (1981). Inälvsparasiter från nors (Pisces, Osmerus eperlanus) från Finlands kustvatten. Memoranda Societatis pro Fauna et Flora Fennica 57, 6570.Google Scholar
Vrijenhoek, R. C. (1978). Genetic differentiation among larval nematodes infecting fishes. Journal of Parasitology 64, 790–8.CrossRefGoogle Scholar
Wolff, R. J. (1984). Mysis relicta as intermediate host of an acanthocephalan parasite. Transactions of the Illinois Academy of Science 77, 12.Google Scholar
Yamaguti, S. (1963). Systema Helminthum. Vol. V. Acanthocephala. New York: Interscience Publishers.Google Scholar
Zdzitowiecki, K. & Valtonen, E. T. (1987). Description of Echinorhynchus bothnienesis sp. n. (Acanthocephala), a parasite of smelt Osmerus eperlanus L. in Bothnian Bay. Acta Parasitologica Polonica 32, 233–8.Google Scholar