Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T03:24:08.977Z Has data issue: false hasContentIssue false

Molecular cloning and characterization of NcROP2Fam-1, a member of the ROP2 family of rhoptry proteins in Neospora caninum that is targeted by antibodies neutralizing host cell invasion in vitro

Published online by Cambridge University Press:  07 June 2013

FERIAL ALAEDDINE
Affiliation:
Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
ANDREW HEMPHILL*
Affiliation:
Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
KARIM DEBACHE
Affiliation:
Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
CHRISTOPHE GUIONAUD
Affiliation:
Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
*
*Corresponding author. Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland. E-mail: [email protected]

Summary

Recent publications demonstrated that a fragment of a Neospora caninum ROP2 family member antigen represents a promising vaccine candidate. We here report on the cloning of the cDNA encoding this protein, N. caninum ROP2 family member 1 (NcROP2Fam-1), its molecular characterization and localization. The protein possesses the hallmarks of ROP2 family members and is apparently devoid of catalytic activity. NcROP2Fam-1 is synthesized as a pre-pro-protein that is matured to 2 proteins of 49 and 55 kDa that localize to rhoptry bulbs. Upon invasion the protein is associated with the nascent parasitophorous vacuole membrane (PVM), evacuoles surrounding the host cell nucleus and, in some instances, the surface of intracellular parasites. Staining was also observed within the cyst wall of ‘cysts’ produced in vitro. Interestingly, NcROP2Fam-1 was also detected on the surface of extracellular parasites entering the host cells and antibodies directed against NcROP2Fam-1-specific peptides partially neutralized invasion in vitro. We conclude that, in spite of the general belief that ROP2 family proteins are intracellular antigens, NcROP2Fam-1 can also be considered as an extracellular antigen, a property that should be taken into account in further experiments employing ROP2 family proteins as vaccines.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, D. L., Mital, J., Ward, G. E., Bradley, P. and Boothroyd, J. C. (2005). Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathogens 1, e17. doi: 10.1371/journal.ppat.0010017.CrossRefGoogle ScholarPubMed
Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. (1997). Current Protocols in Molecular Biology. John Wiley & Sons, Somerset, NJ, USA.Google Scholar
Beckers, C. J., Dubremetz, J. F., Mercereau-Puijalon, O. and Joiner, K. A. (1994). The Toxoplasma gondii rhoptry protein ROP 2 is inserted into the parasitophorous vacuole membrane, surrounding the intracellular parasite, and is exposed to the host cell cytoplasm. Journal of Cell Biology 127, 947961. doi: 10.1083/jcb.127.4.947.CrossRefGoogle Scholar
Besteiro, S., Michelin, A., Poncet, J., Dubremetz, J. F. and Lebrun, M. (2009). Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathogens 5, e1000309. doi:10.1371/journal.ppat.1000309.CrossRefGoogle ScholarPubMed
Bjorkman, C. and Hemphill, A. (1998). Characterization of Neospora caninum iscom antigens using monoclonal antibodies. Parasite Immunology 20, 7380. doi: 10.1046/j.1365-3024.1998.00127.x.CrossRefGoogle ScholarPubMed
Bonifacino, J. S. and Lippincott-Schwartz, J. (2003). Coat proteins: shaping membrane transport. Nature Reviews Molecular Cell Biology 4, 409414. doi: 10.1038/nrm1099.CrossRefGoogle ScholarPubMed
Boothroyd, J. C. and Dubremetz, J. F. (2008). Kiss and spit: the dual roles of Toxoplasma rhoptries. Nature Reviews Microbiology 6, 7988. doi: 10.1038/nrmicro1800.CrossRefGoogle ScholarPubMed
Boudeau, J., Miranda-Saavedra, D., Barton, G. J. and Alessi, D. R. (2006). Emerging roles of pseudokinases. Trends in Cell Biology 16, 443452. doi: 10.1016/j.tcb.2006.07.003.CrossRefGoogle ScholarPubMed
Bradley, P. J. and Boothroyd, J. C. (1999). Identification of the pro-mature processing site of Toxoplasma ROP1 by mass spectrometry. Molecular and Biochemical Parasitology 100, 103109. doi: 10.1016/S0166-6851(99)00035-3.CrossRefGoogle ScholarPubMed
Bradley, P. J. and Boothroyd, J. C. (2001). The pro region of Toxoplasma ROP1 is a rhoptry-targeting signal. International Journal for Parasitology 31, 11771186. doi: 10.1016/S0020-7519(01)00242-9.CrossRefGoogle ScholarPubMed
Bradley, P. J., Hsieh, C. L. and Boothroyd, J. C. (2002). Unprocessed Toxoplasma ROP1 is effectively targeted and secreted into the nascent parasitophorous vacuole. Molecular and Biochemical Parasitology 125, 189193. doi: 10.1016/S0166-6851(02)00162-7.CrossRefGoogle ScholarPubMed
Bradley, P. J., Ward, C., Cheng, S. J., Alexander, D. L., Coller, S., Coombs, G. H., Dunn, J. D., Ferguson, D. J., Sanderson, S. J., Wastling, J. M. and Boothroyd, J. C. (2005). Proteomic analysis of rhoptry organelles reveals many novel constituents for host–parasite interactions in Toxoplasma gondii. Journal of Biological Chemistry 280, 3424534258. doi: 10.1074/jbc.M504158200.CrossRefGoogle ScholarPubMed
Carey, K. L., Jongco, A. M., Kim, K. and Ward, G. E. (2004). The Toxoplasma gondii rhoptry protein ROP4 is secreted into the parasitophorous vacuole and becomes phosphorylated in infected cells. Eukaryotic Cell 3, 13201330. doi: 10.1128/EC.3.5.1320-1330.2004.CrossRefGoogle ScholarPubMed
Carruthers, V. B. and Sibley, L. D. (1997). Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. European Journal of Cell Biology 73, 114123.Google ScholarPubMed
Carruthers, V. B. and Tomley, F. M. (2008). Microneme proteins in apicomplexans. Subcellular Biochemistry 47, 3345. doi: 10.1007/978-0-387-78267-6_2.CrossRefGoogle ScholarPubMed
Carruthers, V. B., Giddings, O. K. and Sibley, L. D. (1999). Secretion of micronemal proteins is associated with Toxoplasma invasion of host cells. Cellular Microbiology 1, 225235. doi: 10.1046/j.1462-5822.1999.00023.x.CrossRefGoogle ScholarPubMed
Carruthers, V. B., Sherman, G. D. and Sibley, L. D. (2000). The Toxoplasma adhesive protein MIC2 is proteolytically processed at multiple sites by two parasite-derived proteases. Journal of Biological Chemistry 275, 1434614353. doi: 10.1074/jbc.275.19.14346.CrossRefGoogle ScholarPubMed
Debache, K., Guionaud, C., Alaeddine, F., Mevissen, M. and Hemphill, A. (2008). Vaccination of mice with recombinant NcROP2 antigen reduces mortality and cerebral infection in mice infected with Neospora caninum tachyzoites. International Journal for Parasitology 38, 14551463. doi: 10.1016/j.ijpara.2008.04.001.CrossRefGoogle ScholarPubMed
Debache, K., Alaeddine, F., Guionaud, C., Monney, T., Müller, J., Strohbusch, M., Leib, S. L., Grandgirard, D. and Hemphill, A. (2009). Vaccination with recombinant NcROP2 combined with recombinant NcMIC1 and NcMIC3 reduces cerebral infection and vertical transmission in mice experimentally infected with Neospora caninum tachyzoites. International Journal for Parasitology 39, 13731384. doi: 10.1016/j.ijpara.2009.04.006.CrossRefGoogle ScholarPubMed
Debache, K., Guionaud, C., Alaeddine, F. and Hemphill, A. (2010). Intraperitoneal and intra-nasal vaccination of mice with three distinct recombinant Neospora caninum antigens results in differential effects with regard to protection against experimental challenge with Neospora caninum tachyzoites. Parasitology 137, 229240. doi: 10.1017/S0031182009991259.CrossRefGoogle ScholarPubMed
Dlugonska, H. (2008). Toxoplasma rhoptries: unique secretory organelles and source of promising vaccine proteins for immunoprevention of toxoplasmosis. Journal of Biomedicine and Biotechnology 2008, 632424. doi: 10.1155/2008/632424.CrossRefGoogle ScholarPubMed
Dubremetz, J. F., Achbarou, A., Bermudes, D. and Joiner, K. A. (1993). Kinetics and pattern of organelle exocytosis during Toxoplasma gondii/host-cell interaction. Parasitology Research 79, 402408.CrossRefGoogle ScholarPubMed
El Hajj, H., Demey, E., Poncet, J., Lebrun, M., Wu, B., Galeotti, N., Fourmaux, M. N., Mercereau-Puijalon, O., Vial, H., Labesse, G. and Dubremetz, J. F. (2006). The ROP2 family of Toxoplasma gondii rhoptry proteins: proteomic and genomic characterization and molecular modeling. Proteomics 6, 57735784. doi: 10.1002/pmic.200600187.CrossRefGoogle ScholarPubMed
El Hajj, H., Lebrun, M., Fourmaux, M. N., Vial, H. and Dubremetz, J. F. (2007 a). Inverted topology of the Toxoplasma gondii ROP5 rhoptry protein provides new insights into the association of the ROP2 protein family with the parasitophorous vacuole membrane. Cellular Microbiology 9, 5464. doi: 10.1111/j.1462-5822.2006.00767.x.CrossRefGoogle ScholarPubMed
El Hajj, H., Lebrun, M., Arold, S. T., Vial, H., Labesse, G. and Dubremetz, J. F. (2007 b). ROP18 is a rhoptry kinase controlling the intracellular proliferation of Toxoplasma gondii. PLoS Pathogens 3, e14. doi: 10.1371/journal.ppat.0030014.CrossRefGoogle ScholarPubMed
Fentress, S. J., Behnke, M. S., Dunay, I. R., Mashayekhi, M., Rommereim, L. M., Fox, B. A., Bzik, D. J., Taylor, G. A., Turk, B. E., Lichti, C. F., Townsend, R. R., Qiu, W., Hui, R., Beatty, W. L. and Sibley, L. D. (2010). Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. Cell Host and Microbe 8, 484495. doi: 10.1016/j.chom.2010.11.005.CrossRefGoogle ScholarPubMed
Fentress, S. J., Steinfeldt, T., Howard, J. C. and Sibley, L. D. (2012). The arginine-rich N-terminal domain of ROP18 is necessary for vacuole targeting and virulence of Toxoplasma gondii. Cellular Microbiology 14, 1921–33.CrossRefGoogle ScholarPubMed
Fourmaux, M. N., Garcia-Reguet, N., Mercereau-Puijalon, O. and Dubremetz, J. F. (1996). Toxoplasma gondii microneme proteins: gene cloning and possible function. Current Topics in Microbiology and Immunology 219, 5558.Google ScholarPubMed
Gajria, B., Bahl, A., Brestelli, J., Dommer, J., Fischer, S., Gao, X., Heiges, M., Iodice, J., Kissinger, J. C., Mackey, A. J., Pinney, D. F., Roos, D. S., Stoeckert, C. J. Jr., Wang, H. and Brunk, B. P. (2008). ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Research 36, D553556. doi: 10.1093/nar/gkm981.CrossRefGoogle ScholarPubMed
Garcia-Reguet, N., Lebrun, M., Fourmaux, M. N., Mercereau-Puijalon, O., Mann, T., Beckers, C. J., Samyn, B., Van Beeumen, J., Bout, D. and Dubremetz, J. F. (2000). The microneme protein MIC3 of Toxoplasma gondii is a secretory adhesin that binds to both the surface of the host cells and the surface of the parasite. Cellular Microbiology 2, 353364. doi: 10.1046/j.1462-5822.2000.00064.x.CrossRefGoogle ScholarPubMed
Gautier, R., Douguet, D., Antonny, B. and Drin, G. (2008). HELIQUEST: a web server to screen sequences with specific alpha-helical properties. Bioinformatics 24, 21012102. doi: 10.1093/bioinformatics/btn392.CrossRefGoogle ScholarPubMed
Gross, U., Bormuth, H., Gaissmaier, C., Dittrich, C., Krenn, V., Bohne, W. and Ferguson, D. J. (1995). Monoclonal rat antibodies directed against Toxoplasma gondii suitable for studying tachyzoite-bradyzoite interconversion in vivo. Clinical and Diagnostic Laboratory Immunology 2, 542548.CrossRefGoogle ScholarPubMed
Guionaud, C., Hemphill, A., Mevissen, M. and Alaeddine, F. (2010). Molecular characterization of Neospora caninum MAG1, a dense granule protein secreted into the parasitophorous vacuole, and associated with the cyst wall and the cyst matrix. Parasitology 137, 16051619. doi: 10.1017/S0031182010000442.CrossRefGoogle Scholar
Hajagos, B. E., Turetzky, J. M., Peng, E. D., Cheng, S. J., Ryan, C. M., Souda, P., Whitelegge, J. P., Lebrun, M., Dubremetz, J. F. and Bradley, P. J. (2011). Molecular dissection of novel trafficking and processing of the T. gondii rhoptry metalloprotease Toxolysin-1. Traffic 13, 292304.CrossRefGoogle Scholar
Hajj, H. E., Lebrun, M., Fourmaux, M. N., Vial, H. and Dubremetz, J. F. (2006). Characterization, biosynthesis and fate of ROP7, a ROP2 related rhoptry protein of Toxoplasma gondii. Molecular and Biochemical Parasitology 146, 98100. doi: 10.1016/j.molbiopara.2005.10.011.CrossRefGoogle ScholarPubMed
Hakansson, S., Charron, A. J. and Sibley, L. D. (2001). Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. EMBO Journal 20, 31323144. doi: 10.1093/emboj/20.12.3132.CrossRefGoogle ScholarPubMed
Hanks, S. K. and Hunter, T. (1995). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB Journal 9, 576596.CrossRefGoogle ScholarPubMed
Hemphill, A. and Gottstein, B. (1996). Identification of a major surface protein on Neospora caninum tachyzoites. Parasitology Research 82, 497504. doi: 10.1007/s004360050152.CrossRefGoogle Scholar
Hemphill, A., Gottstein, B. and Kaufmann, H. (1996). Adhesion and invasion of bovine endothelial cells by Neospora caninum. Parasitology 112(Pt 2), 183197. doi: 10.1017/S0031182000084754.CrossRefGoogle ScholarPubMed
Hemphill, A., Felleisen, R., Connolly, B., Gottstein, B., Hentrich, B. and Müller, N. (1997). Characterization of a cDNA-clone encoding Nc-p43, a major Neospora caninum tachyzoite surface protein. Parasitology 115, 581590. doi: 10.1017/S0031182097001650.CrossRefGoogle ScholarPubMed
Hoppe, H. C., Ngo, H. M., Yang, M. and Joiner, K. A. (2000). Targeting to rhoptry organelles of Toxoplasma gondii involves evolutionarily conserved mechanisms. Nature Cell Biology 2, 449456. doi: 10.1038/35017090.CrossRefGoogle ScholarPubMed
Huynh, M. H., Rabenau, K. E., Harper, J. M., Beatty, W. L., Sibley, L. D. and Carruthers, V. B. (2003). Rapid invasion of host cells by Toxoplasma requires secretion of the MIC2-M2AP adhesive protein complex. EMBO Journal 22, 20822090. doi: 10.1093/emboj/cdg217.CrossRefGoogle ScholarPubMed
Joiner, K. A. and Roos, D. S. (2002). Secretory traffic in the eukaryotic parasite Toxoplasma gondii: less is more. Journal of Cell Biology 157, 557563. doi: 10.1083/jcb.200112144.CrossRefGoogle ScholarPubMed
Kats, L. M., Black, C. G., Proellocks, N. I. and Coppel, R. L. (2006). Plasmodium rhoptries: how things went pear-shaped. Trends in Parasitology 22, 269276. doi: 10.1016/j.pt.2006.04.001.CrossRefGoogle ScholarPubMed
Kissinger, J. C., Gajria, B., Li, L., Paulsen, I. T. and Roos, D. S. (2003). ToxoDB: accessing the Toxoplasma gondii genome. Nucleic Acids Research 31, 234236. doi: 10.1093/nar/gkg072.CrossRefGoogle ScholarPubMed
Labesse, G., Gelin, M., Bessin, Y., Lebrun, M., Papoin, J., Cerdan, R., Arold, S. T. and Dubremetz, J. F. (2009). ROP2 from Toxoplasma gondii: a virulence factor with a protein-kinase fold and no enzymatic activity. Structure 17, 139146. doi: 10.1016/j.str.2008.11.005.CrossRefGoogle ScholarPubMed
Lebrun, M., Michelin, A., El Hajj, H., Poncet, J., Bradley, P. J., Vial, H. and Dubremetz, J. F. (2005). The rhoptry neck protein RON4 re-localizes at the moving junction during Toxoplasma gondii invasion. Cellular Microbiology 7, 18231833. doi: 10.1111/j.1462-5822.2005.00646.x.CrossRefGoogle ScholarPubMed
Lee, B. Y., Ahn, M. H., Kim, H. C. and Min, D. Y. (2001). Toxoplasma gondii: ultrastructural localization of specific antigens and inhibition of intracellular multiplication by monoclonal antibodies. Korean Journal of Parasitology 39, 6775. doi: 10.3347/kjp.2001.39.1.67.CrossRefGoogle ScholarPubMed
Li, L., Brunk, B. P., Kissinger, J. C., Pape, D., Tang, K., Cole, R. H., Martin, J., Wylie, T., Dante, M., Fogarty, S. J., Howe, D. K., Liberator, P., Diaz, C., Anderson, J., White, M., Jerome, M. E., Johnson, E. A., Radke, J. A., Stoeckert, C. J. Jr., Waterston, R. H., Clifton, S. W., Roos, D. S. and Sibley, L. D. (2003). Gene discovery in the apicomplexa as revealed by EST sequencing and assembly of a comparative gene database. Genome Research 13, 443454. doi: 10.1101/gr.693203.CrossRefGoogle ScholarPubMed
Marugán-Hernández, V., Alvarez-García, G., Tomley, F., Hemphill, A., Regidor-Cerrillo, J. and Ortega-Mora, L. M. (2011). Identification of novel rhoptry proteins in Neospora caninum by LC/MS-MS analysis of subcellular fractions. Journal of Proteomics 74, 629642.CrossRefGoogle ScholarPubMed
Matz, M., Shagin, D., Bogdanova, E., Britanova, O., Lukyanov, S., Diatchenko, L. and Chenchik, A. (1999). Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Research 27, 15581560. doi: 10.1093/nar/27.6.1558.CrossRefGoogle ScholarPubMed
McAllister, M. M., Parmley, S. F., Weiss, L. M., Welch, V. J. and McGuire, A. M. (1996). An immunohistochemical method for detecting bradyzoite antigen (BAG5) in Toxoplasma gondii-infected tissues cross-reacts with a Neospora caninum bradyzoite antigen. Journal of Parasitology 82, 354355. doi: 10.2307/3284181.CrossRefGoogle ScholarPubMed
Melo, M. B., Jensen, K. D. and Saeij, J. P. (2011). Toxoplasma effectors are master regulators of the inflammatory response. Trends in Parasitology 27, 487495.CrossRefGoogle ScholarPubMed
Mercier, C., Adjogble, K. D., Daubener, W. and Delauw, M. F. (2005). Dense granules: are they key organelles to help understand the parasitophorous vacuole of all apicomplexa parasites? International Journal for Parasitology 35, 829849. doi: 10.1016/j.ijpara.2005.03.011.CrossRefGoogle ScholarPubMed
Miller, S. A., Thathy, V., Ajioka, J. W., Blackman, M. J. and Kim, K. (2003). TgSUB2 is a Toxoplasma gondii rhoptry organelle processing proteinase. Molecular Microbiology 49, 883894. doi: 10.1046/j.1365-2958.2003.03604.x.CrossRefGoogle ScholarPubMed
Mordue, D. G., Desai, N., Dustin, M. and Sibley, L. D. (1999). Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring. Journal of Experimental Medicine 190, 17831792. doi: 10.1084/jem.190.12.1783.CrossRefGoogle ScholarPubMed
Mukherjee, K., Sharma, M., Urlaub, H., Bourenkov, G. P., Jahn, R., Sudhof, T. C. and Wahl, M. C. (2008). CASK Functions as a Mg2+-independent neurexin kinase. Cell 133, 328339. doi: 10.1016/j.cell.2008.02.036.CrossRefGoogle ScholarPubMed
Müller, N., Vonlaufen, N., Gianinazzi, C., Leib, S. L. and Hemphill, A. (2002). Application of real-time fluorescent PCR for quantitative assessment of Neospora caninum infections in organotypic slice cultures of rat central nervous system tissue. Journal of Clinical Microbiology 40, 252255. doi: 10.1128/JCM.40.1.252-255.2002.CrossRefGoogle ScholarPubMed
Nakaar, V., Ngo, H. M., Aaronson, E. P., Coppens, I., Stedman, T. T. and Joiner, K. A. (2003). Pleiotropic effect due to targeted depletion of secretory rhoptry protein ROP2 in Toxoplasma gondii. Journal of Cell Science 116, 23112320. doi: 10.1242/jcs.00382.CrossRefGoogle ScholarPubMed
Ngo, H. M., Hoppe, H. C. and Joiner, K. A. (2000). Differential sorting and post-secretory targeting of proteins in parasitic invasion. Trends in Cell Biology 10, 6772. doi: 10.1016/S0962-8924(99)01698-0.CrossRefGoogle ScholarPubMed
Ngo, H. M., Yang, M., Paprotka, K., Pypaert, M., Hoppe, H. and Joiner, K. A. (2003). AP-1 in Toxoplasma gondii mediates biogenesis of the rhoptry secretory organelle from a post-Golgi compartment. Journal of Biological Chemistry 278, 53435352. doi: 10.1074/jbc.M208291200.CrossRefGoogle ScholarPubMed
Ngo, H. M., Yang, M. and Joiner, K. A. (2004). Are rhoptries in apicomplexan parasites secretory granules or secretory lysosomal granules? Molecular Microbiology 52, 15311541. doi: 10.1111/j.1365-2958.2004.04056.x.CrossRefGoogle ScholarPubMed
Nichols, B. A., Chiappino, M. L. and O'Connor, G. R. (1983). Secretion from the rhoptries of Toxoplasma gondii during host-cell invasion. Journal of Ultrastructure Research 83, 8598. doi: 10.1016/S0022-5320(83)90067-9.CrossRefGoogle ScholarPubMed
Niedelman, W., Gold, D. A., Rosowski, E. E., Sprokholt, J. K., Lim, D., Farid Arenas, A., Melo, M. B., Spooner, E., Yaffe, M. B. and Saeij, J. P. (2012). The rhoptry proteins ROP18 and ROP5 mediate Toxoplasma gondii evasion of the murine, but not the human, interferon-gamma response. PLoS Pathogen 8, e1002784.CrossRefGoogle Scholar
Odorico, M. and Pellequer, J. L. (2003). BEPITOPE: predicting the location of continuous epitopes and patterns in proteins. Journal of Molecular Recognition 16, 2022. doi: 10.1002/jmr.602.CrossRefGoogle ScholarPubMed
Peixoto, L., Chen, F., Harb, O. S., Davis, P. H., Beiting, D. P., Brownback, C. S., Ouloguem, D. and Roos, D. S. (2010). Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses. Cell Host and Microbe 8, 208218. doi: 10.1016/j.chom.2010.07.004.CrossRefGoogle ScholarPubMed
Pernas, L. and Boothroyd, J. C. (2010). Association of host mitochondria with the parasitophorous vacuole during Toxoplasma infection is not dependent on rhoptry proteins ROP2/8. International Journal for Parasitology 40, 13671371. doi: 10.1016/j.ijpara.2010.07.002.CrossRefGoogle Scholar
Peterson, E. L., Kondev, J., Theriot, J. A. and Phillips, R. (2009). Reduced amino acid alphabets exhibit an improved sensitivity and selectivity in fold assignment. Bioinformatics 25, 13561362. doi: 10.1093/bioinformatics/btp164.CrossRefGoogle ScholarPubMed
Porchet-Hennere, E. and Nicolas, G. (1983). Are rhoptries of Coccidia really extrusomes? Journal of Ultrastructure Research 84, 194203. doi: 10.1016/S0022-5320(83)90130-2.CrossRefGoogle ScholarPubMed
Prlic, A., Domingues, F. S. and Sippl, M. J. (2000). Structure-derived substitution matrices for alignment of distantly related sequences. Protein Engineering 13, 545550. doi: 10.1093/protein/13.8.545.CrossRefGoogle ScholarPubMed
Qiu, W., Wernimont, A., Tang, K., Taylor, S., Lunin, V., Schapira, M., Fentress, S., Hui, R. and Sibley, L. D. (2009). Novel structural and regulatory features of rhoptry secretory kinases in Toxoplasma gondii. EMBO Journal 28, 969979. doi: 10.1038/emboj.2009.24.CrossRefGoogle ScholarPubMed
Reese, M. L. and Boothroyd, J. C. (2009). A helical membrane-binding domain targets the Toxoplasma ROP2 family to the parasitophorous vacuole. Traffic 10, 14581470. doi: 10.1111/j.1600-0854.2009.00958.x.CrossRefGoogle Scholar
Regidor-Cerrillo, J., Álvarez-García, G., Pastor-Fernández, I., Marugán-Hernández, V., Gómez-Bautista, M. and Ortega-Mora, L. M. (2012). Proteome expression changes among virulent and attenuated Neospora caninum isolates. Journal of Proteomics 75, 23062318.CrossRefGoogle ScholarPubMed
Reid, A. J., Vermont, S. J., Cotton, J. A., Harris, D., Hill-Cawthorne, G. A., Konen-Waisman, S., Latham, S. M., Mourier, T., Norton, R., Quail, M. A., Sanders, M., Shanmugam, D., Sohal, A., Wasmuth, J. D., Brunk, B., Grigg, M. E., Howard, J. C., Parkinson, J., Roos, D. S., Trees, A. J., Berriman, M., Pain, A. and Wastling, J. M. (2012). Comparative genomics of the Apicomplexan parasites Toxoplasma gondii and Neospora caninum: coccidia differing in host range and transmission strategy. PLoS Pathogens 8, e1002567. doi: 10.1371/journal.ppat.1002567.CrossRefGoogle ScholarPubMed
Richard, D., Kats, L. M., Langer, C., Black, C. G., Mitri, K., Boddey, J. A., Cowman, A. F. and Coppel, R. L. (2009). Identification of rhoptry trafficking determinants and evidence for a novel sorting mechanism in the malaria parasite Plasmodium falciparum. PLoS Pathogens 5, e1000328. doi: 10.1371/journal.ppat.1000328.CrossRefGoogle ScholarPubMed
Robinson, M. S. (2004). Adaptable adaptors for coated vesicles. Trends in Cell Biology 14, 167174. doi: 10.1016/j.tcb.2004.02.002.CrossRefGoogle ScholarPubMed
Sadak, A., Taghy, Z., Fortier, B. and Dubremetz, J. F. (1988). Characterization of a family of rhoptry proteins of Toxoplasma gondii. Molecular and Biochemical Parasitology 29, 203211.CrossRefGoogle ScholarPubMed
Saeij, J. P., Boyle, J. P., Coller, S., Taylor, S., Sibley, L. D., Brooke-Powell, E. T., Ajioka, J. W. and Boothroyd, J. C. (2006). Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science 314, 17801783. doi: 10.1126/science.1133690.CrossRefGoogle ScholarPubMed
Saffer, L. D., Mercereau-Puijalon, O., Dubremetz, J. F. and Schwartzman, J. D. (1992). Localization of a Toxoplasma gondii rhoptry protein by immunoelectron microscopy during and after host cell penetration. Journal of Protozoology 39, 526530. doi: 10.1111/j.1550-7408.1992.tb04844.x.CrossRefGoogle ScholarPubMed
Schwartz, S., Zhang, Z., Frazer, K. A., Smit, A., Riemer, C., Bouck, J., Gibbs, R., Hardison, R. and Miller, W. (2000). PipMaker–a web server for aligning two genomic DNA sequences. Genome Research 10, 577586. doi: 10.1101/gr.10.4.577.CrossRefGoogle ScholarPubMed
Seeber, F. (1997). Consensus sequence of translational initiation sites from Toxoplasma gondii genes. Parasitology Research 83, 309311. doi: 10.1007/s004360050254.CrossRefGoogle ScholarPubMed
Sheiner, L. and Soldati-Favre, D. (2008). Protein trafficking inside Toxoplasma gondii. Traffic 9, 636646. doi: 10.1111/j.1600-0854.2008.00713.x.CrossRefGoogle ScholarPubMed
Sinai, A. P. and Joiner, K. A. (2001). The Toxoplasma gondii protein ROP2 mediates host organelle association with the parasitophorous vacuole membrane. Journal of Cell Biology 154, 95108. doi: 10.1083/jcb.200101073.CrossRefGoogle ScholarPubMed
Sloves, P. J., Delhaye, S., Mouveaux, T., Werkmeister, E., Slomianny, C., Hovasse, A., Dilezitoko Alayi, T., Callebaut, I., Gaji, R. Y., Schaeffer-Reiss, C., Van Dorsselear, A., Carruthers, V. B. and Tomavo, S. (2012). Toxoplasma sortilin-like receptor regulates protein transport and is essential for apical secretory organelle biogenesis and host infection. Cell Host and Microbe 11, 515527. doi: 10.1016/j.chom.2012.03.006.CrossRefGoogle ScholarPubMed
Soldati, D., Lassen, A., Dubremetz, J. F. and Boothroyd, J. C. (1998). Processing of Toxoplasma ROP1 protein in nascent rhoptries. Molecular and Biochemical Parasitology 96, 3748. doi: 10.1016/S0166-6851(98)00090-5.CrossRefGoogle ScholarPubMed
Solis, A. D. and Rackovsky, S. (2000). Optimized representations and maximal information in proteins. Proteins 38, 149164. doi: 10.1002/(SICI)1097-0134(20000201)38:2<149::AID-PROT4>3.0.CO;2-#.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Steinfeldt, T., Konen-Waisman, S., Tong, L., Pawlowski, N., Lamkemeyer, T., Sibley, L. D., Hunn, J. P. and Howard, J. C. (2010). Phosphorylation of mouse immunity-related GTPase (IRG) resistance proteins is an evasion strategy for virulent Toxoplasma gondii. PLoS Biology 8, e1000576. doi: 10.1371/journal.pbio.1000576.CrossRefGoogle ScholarPubMed
Striepen, B., Soldati, D., Garcia-Reguet, N., Dubremetz, J. F. and Roos, D. S. (2001). Targeting of soluble proteins to the rhoptries and micronemes in Toxoplasma gondii. Molecular and Biochemical Parasitology 113, 4553. doi: 10.1016/S0166-6851(00)00379-0.CrossRefGoogle Scholar
Taylor, S., Barragan, A., Su, C., Fux, B., Fentress, S. J., Tang, K., Beatty, W. L., Hajj, H. E., Jerome, M., Behnke, M. S., White, M., Wootton, J. C. and Sibley, L. D. (2006). A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science 314, 17761780. doi: 10.1126/science.1133643.CrossRefGoogle ScholarPubMed
Turetzky, J. M., Chu, D. K., Hajagos, B. E. and Bradley, P. J. (2010). Processing and secretion of ROP13: a unique Toxoplasma effector protein. International Journal for Parasitology 40, 10371044. doi: 10.1016/j.ijpara.2010.02.014.CrossRefGoogle ScholarPubMed
Vonlaufen, N., Müller, N., Keller, N., Naguleswaran, A., Bohne, W., McAllister, M. M., Bjorkman, C., Müller, E., Caldelari, R. and Hemphill, A. (2002). Exogenous nitric oxide triggers Neospora caninum tachyzoite-to-bradyzoite stage conversion in murine epidermal keratinocyte cell cultures. International Journal for Parasitology 32, 12531265. doi: 10.1016/S0020-7519(02)00126-1.CrossRefGoogle ScholarPubMed
Vonlaufen, N., Guetg, N., Naguleswaran, A., Müller, N., Bjorkman, C., Schares, G., von Blumroeder, D., Ellis, J. and Hemphill, A. (2004). In vitro induction of Neospora caninum bradyzoites in vero cells reveals differential antigen expression, localization, and host-cell recognition of tachyzoites and bradyzoites. Infection and Immunity 72, 576583. doi: 10.1128/IAI.72.1.576-583.2004.CrossRefGoogle ScholarPubMed
Xu, B., English, J. M., Wilsbacher, J. L., Stippec, S., Goldsmith, E. J. and Cobb, M. H. (2000). WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. Journal of Biological Chemistry 275, 1679516801. doi: 10.1074/jbc.275.22.16795.CrossRefGoogle ScholarPubMed
Supplementary material: Image

ALAEDDINE et al. supplementary material

Supplementary figure

Download ALAEDDINE et al. supplementary material(Image)
Image 2.6 MB
Supplementary material: Image

ALAEDDINE et al. supplementary material

Supplementary figure

Download ALAEDDINE et al. supplementary material(Image)
Image 4.5 MB
Supplementary material: Image

ALAEDDINE et al. supplementary material

Supplementary figure

Download ALAEDDINE et al. supplementary material(Image)
Image 2.9 MB
Supplementary material: Image

ALAEDDINE et al. supplementary material

Supplementary figure

Download ALAEDDINE et al. supplementary material(Image)
Image 75 KB
Supplementary material: Image

ALAEDDINE et al. supplementary material

Supplementary figure

Download ALAEDDINE et al. supplementary material(Image)
Image 410.7 KB