Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-04T19:16:36.550Z Has data issue: false hasContentIssue false

Molecular characterization of antigens of lymphatic filarial parasites

Published online by Cambridge University Press:  23 August 2011

M. E. Selkirk
Affiliation:
Department of Pure and Applied Biology, Imperial College of Science and Technology, Prince Consort Road, London SW7 2BB
D. A. Denham
Affiliation:
London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 6BT
F. Partono
Affiliation:
Department of Parasitology, Faculty of Medicine, University of Indonesia, Salemba Raya, Jakarta, Indonesia
I. Sutanto
Affiliation:
Department of Parasitology, Faculty of Medicine, University of Indonesia, Salemba Raya, Jakarta, Indonesia
R. M. Maizels
Affiliation:
Department of Pure and Applied Biology, Imperial College of Science and Technology, Prince Consort Road, London SW7 2BB

Extract

Three species of filarial worms, Wuchereria bancrofti, Brugia malayi and Brugia timori, are the causative agents of lymphatic filariasis in man, defined by the characteristic tropism of adult worms of each species for the afferent lymphatics. Reproductive activity leads to the release of large numbers of microfilariae, which circulate in the vascular system, and upon ingestion by an appropriate mosquito vector, develop through to infective third-stage larvae (L3) within 10–14 days. After a subsequent bloodmeal, the infective larvae enter the definitive host via the wound and mature to the adult stage over several months, involving two moults, during which the entire nematode exoskeleton (cuticle) is replaced.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ardeshir, F., Flint, J. E. & Reese, R. T. (1985). Expression of Plasmodium falciparum surface antigens in Escherichia coli. Proceedings of the National Academy of Sciences, USA 82, 2518–22.CrossRefGoogle ScholarPubMed
Au, A. C. S., Denham, D. A., Steward, M. W., Draper, C. C., Ismail, M. M., Rao, C. K. & Mak, J. W. (1981). Detection of circulating antigens and immune complexes in feline and human lymphatic filariasis. South East Asian Journal of Tropical Medicine and Public Health 12, 492–8.Google ScholarPubMed
Bain, O. (1975). Redescription de cinq espèces d'Onchocerques. Annales de Parasitologie, Paris 50, 763.Google Scholar
Bird, A. F. (1971). The Structure of Nematodes. New York: Academic Press.Google Scholar
Baschong, W. & Rudin, W. (1982). Comparison of surface iodination methods by electron microscope autoradiography applied in vitro to different life-stages of Dipetalonema viteae (Filarioidea). Parasitology 85, 559–65.CrossRefGoogle ScholarPubMed
Baschong, W., Tanner, M., Betschart, B., Rudin, W. & Weiss, N. (1982). Dipetalonema viteae: Extraction and immunogenicity of cuticular antigens from female worms. Experimental Parasitology 53, 262–9.Google Scholar
Betschart, B., Rudin, W. & Weiss, N. (1985). The isolation and immunogenicity of the cuticle of Dipetalonema viteae (Filaroidea). Zeitschrift für Parasitenkunde 71, 8795.Google Scholar
Bolton, A. E. & Hunter, W. M. (1973). The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. The Biochemical Journal 133, 529–39.CrossRefGoogle ScholarPubMed
Bornstein, P. & Traub, W. (1979). The chemistry and biology of collagen. In The Proteins IV, 412632.Google Scholar
Brundish, D. E. & Baddiley, J. (1968). Pneumococcal C-substance, a ribitol teichoic acid containing choline phosphate. The Biochemical Journal 110, 573–82.Google Scholar
Burnette, W. N. (1981). ‘Western blotting’ electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated Protein A. Analytical Biochemistry 112, 195203.Google Scholar
Canlas, M. M. & Piessens, W. F. (1985). Stage-specific and common antigens of Brugia malayi identified with monoclonal antibodies. Journal of Immunology 132, 3138–41.CrossRefGoogle Scholar
Canlas, M., Wadeee, A., Lamontagne, L. & Piessens, W. F. (1984). A monoclonal antibody to surface antigens on microfilariae of Brugia malayi reduces microfilaremia in infected jirds. American Journal of Tropical Medicine and Hygiene 33, 420–4.Google Scholar
Cheung, A., Shaw, A. R., Leban, J. & Perrin, L. H. (1985). Cloning and expression in Escherichia coli of a surface antigen of Plasmodium falciparum merozoites. European Molecular Biology Organization Journal 4, 1007–12.CrossRefGoogle ScholarPubMed
Chirgwin, J. M., Przybla, A. E., MacDonald, R. J. & Rutter, W. J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–8.CrossRefGoogle ScholarPubMed
Coppel, R. L., Cowman, A. F., Ungelbach, K. R., Brown, G. V., Saint, R. B., Kemp, D. J. & Anders, R. F. (1983). Isolate-specific S-antigen of Plasmodium falciparum contains a repeated sequence of eleven amino acids. Nature, London 306, 751–6.Google Scholar
Cox, G. N., Kusch, M., Denevi, K. & Edgar, R. S. (1981 b). Temporal regulation of cuticle synthesis during development of Caenorhabditis elegans. Developmental Biology 84, 277–85.CrossRefGoogle ScholarPubMed
Cox, G. N., Kusch, M. & Edgar, R. S. (1981 a). Cuticle of Caenorhabditis elegans: its isolation and partial characterization. Journal of Cell Biology 90, 717.CrossRefGoogle ScholarPubMed
Dasgupta, A., Bala, S. & Dutta, S. N. (1984). Lymphatic filariasis in man: demonstration of circulating antigens in Wuchereria bancrofti infection. Parasite Immunology 6, 341–8.CrossRefGoogle ScholarPubMed
Daveau, C. & Ambroise-Thomas, A. (1982). Séro-diagnostic de l'onchocercose par micro-ELISA face à des antigènes homologues somatiques et métaboliques (excrètes-secrètes). Comparison à l'immunofluorescence indirecte. Médecine Tropicale 42, 513–19.Google Scholar
Denham, D. A., McGreevy, P. B., Suswillo, R. R. & Rogers, R. (1983). The resistance to reinfection of cats repeatedly inoculated with infective larvae of Brugia pahangi. Parasitology 86, 1118.Google Scholar
Denham, D. A., Ponnudurai, T., Nelson, G. S., Guy, F. & Rogers, R. (1972). Studies with Brugia pahangi. I. Parasitological observations on primary infections of cats (Felis catus). International Journal for Parasitology 2, 239–47.CrossRefGoogle ScholarPubMed
Denham, D. A. & Rogers, R. (1975). Structural and functional studies on the lymphatics of cats infected with Brugia pahangi. Transactions of the Royal Society for Tropical Medicine and Hygiene 69, 173–6.CrossRefGoogle ScholarPubMed
Dissanayake, S., De Silva, L. V. K. & Ismail, M. M. (1980). IgM antibody to filarial antigens in human cord blood: possibility of transplacental infection. Transactions of the Royal Society for Tropical Medicine and Hygiene 74, 542–4.CrossRefGoogle ScholarPubMed
Dissanayake, S., Forsyth, K. P., Ismail, M. M. & Mitchell, G. F. (1984). Detection of circulating antigen in Bancroftian filariasis by using a monoclonal antibody. American Journal of Tropical Medicine and Hygiene 33, 1130–40.Google Scholar
Forsyth, K. P., Copeman, D. B., Anders, R. F. & Mitchell, G. F. (1981). The major radioiodinated cuticular antigens of Onchocerca gibsoni microfilariae are neither species nor Onchocerca specific. Acta Tropica 38, 343–52.Google Scholar
Forsyth, K. P., Copeman, D. B. & Mitchell, G. F. (1982). Purification of Onchocerca gibsoni microfilariae. International Journal for Parasitology 12, 53–7.CrossRefGoogle ScholarPubMed
Forsyth, K. P., Mitchell, G. F. & Copeman, D. B. (1984). Onchocerca gibsoni: increase of circulating antigen with chemotherapy in bovines. Experimental Parasitology 58, 4155.CrossRefGoogle ScholarPubMed
Forsyth, K. P., Spark, R., Kazura, J., Brown, G. V., Peters, P., Heywood, P., Dissanayake, S. & Mitchell, G. F. (1985). A monoclonal-based immunoradiometric assay for detection of circulating antigen in Bancroftian filariasis. Journal of Immunology 134, 1172–7.CrossRefGoogle Scholar
Franks, M. B. (1946). Specific soluble antigen in the blood of filarial patients. Journal of Parasitology 32, 400–6.Google Scholar
Fujimoto, D. & Kanaya, S. (1973). Cuticlin: a noncollagen structural protein from Ascaris cuticle. Archives of Biochemistry and Biophysics 157, 16.CrossRefGoogle ScholarPubMed
Gutman, G. A. & Mitchell, G. F. (1977). Ascaris suum: location of phosphorylcholine in lung larvae. Experimental Parasitology 43, 161–8.Google Scholar
Hamilton, R. G., Hussain, R. & Ottesen, E. A. (1984). Immunoradiometric assay for detection of filarial antigens in human serum. Journal of Immunology 133, 2237–42.CrossRefGoogle ScholarPubMed
Haque, A. & Capron, A. (1982). Transplacental transfer of rodent microfilariae induces antigen-specific tolerance in rats. Nature, London 299, 361–3.CrossRefGoogle ScholarPubMed
Haque, A., Capron, A., Ouaissi, A., Kouemeni, L., Lejeune, J. P., Bonnel, B. & Pierce, R. (1983). Immune unresponsiveness and its possible relation to filarial disease. Contributions in Microbiology and Immunology (Basel) 7, 921.Google Scholar
Hedge, E. C. & Ridley, D. S. (1977). Immunofluorescent reactions with microfilariae. 1. Diagnostic evaluation. Transactions of the Royal Society for Tropical Medicine and Hygiene 71, 304–7.Google Scholar
Hotez, P. J. & Cerami, A. (1983). Secretion of a proteolytic anticoagulant by Ancylostoma hookworms. Journal of Experimental Medicine 157, 1594–603.CrossRefGoogle ScholarPubMed
Johnson, P. W., Van Gundy, S. D. & Thompson, W. W. (1970). Cuticle formation in Hemicycliophora arenaria, Aphelenchus avenae and Hirschmaniella gracillis. Journal of Nematology 2, 5979.Google Scholar
Kan, S. P. & Davey, M. G. (1968). Molting in a parasitic nematode Phocanema decipiens III. The histochemistry of cuticle deposition and protein synthesis. Canadian Journal of Zoology 46, 723–7.Google Scholar
Kaushal, N. A., Hussain, R., Nash, T. E. & Ottesen, E. A. (1982). Identification and characterization of excretory–secretory products of Brugia malayi, adult filarial parasites. Journal of Immunology 129, 338–43.Google Scholar
Kharat, I., Harinath, B. C. & Ghirnikar, S. N. (1982). Antibody analysis in human filarial sera by EL1SA using Wuchereria bancrofti microfilarial culture antigens. Indian Journal of Experimental Biology 20, 378–80.Google Scholar
Kramer, J. M., Cox, G. N. & Hirsh, D. (1982). Comparisons of the complete sequences of two collagen genes from Caenorhabditis elegans. Cell 30, 599606.CrossRefGoogle ScholarPubMed
Land, H., Grez, H., Hansen, W., Lindermaier, W. & Schuetz, G. (1981). 5′-terminal sequences of eukaryotic mRNA can be cloned with high efficiency. Nucleic Acids Research 9, 2251–6.CrossRefGoogle Scholar
Lee, D. L. (1966). The structure and composition of the helminth cuticle. Advances in Parasitology 4, 187254.CrossRefGoogle ScholarPubMed
Leushner, J. & Pasternak, J. (1975). Programmed synthesis of collagen during postembryonic development of the nematode Panagrellus silusiae. Developmental Biology 47, 6880.Google Scholar
Leushner, J. R. A., Semple, N. E. & Pasternak, J. P. (1979). Isolation and characterisation of the cuticle from the free-living nematode Panagrellus silusiae. Biochimica Biophysica Acta 580, 166–74.CrossRefGoogle ScholarPubMed
Maizels, R. M., Denham, D. A. & Sutanto, I. (1985 a). Secreted and circulating antigens of the filarial parasite Brugia pahangi: analysis of in vitro released components and detection of parasite products in vivo. Molecular and Biochemical Parasitology 17, 277–88.CrossRefGoogle ScholarPubMed
Maizels, R. M., Meghji, M. & Ogilvie, B. M. (1983 c). Restricted sets of parasite antigens from the surface of different stages and sexes of the nematode parasite Nippostrongylus brasiliensis. Immunology 48, 107–21.Google Scholar
Maizels, R. M., Partono, F., Oemijati, S., Denham, D. A. & Ogilvie, B. M. (1983 b). Cross-reactive surface antigens on three stages of Brugia malayi, B. pahangi and B. timori. Parasitology 87, 249–63.Google Scholar
Maizels, R. M., Partono, F., Oemijati, S. & Ogilvie, B. M. (1983 a). Antigenic analysis of Brugia timori, a filarial nematode of man: initial characterisation by surface radioiodination and evaluation of diagnostic potential. Clinical and Experimental Immunology 51, 269–77.Google Scholar
Maizels, R. M., Philipp, M., Dasgupta, A. & Partono, F. (1984). Human serum albumin is a major component on the surface of microfilariae of Wuchereria bancrofti. Parasite Immunology 6, 185–90.CrossRefGoogle Scholar
Maizels, R. M., Philipp, M. & Ogilvie, B. M. (1982). Molecules on the surface of parasitic nematodes as probes of the immune response in infection. Immunological Reviews 61, 109–36.CrossRefGoogle ScholarPubMed
Maizels, R. M., Sutanto, I., Gomez-Priego, A., Lillywhite, J. & Denham, D. A. (1985 b). Specificity of surface molecules of adult Brugia parasites: cross-reactivity with antibody from Wuchereria, Onchocerca and other human filarial infections. Tropenmedizin und Parasitologie (in the Press).Google Scholar
Markwell, M. A. K. & Fox, C. F. (1978). Surface-specific iodination of membrane proteins of viruses and eukaryotic cells using l,3,4,6-tetrachloro-3a, 6a-diphenylglycouril. Biochemistry 17, 4807–17.Google Scholar
Marshall, E. & Howells, R. E. (1984). Surface turnover in the cuticle of Brugia pahangi. Parasitology 89, xiii.Google Scholar
Marshall, E. & Howells, R. E. (1985). An evaluation of different methods for labelling the surface of the filarial nematode Brugia pahangi with 125Iodine. Molecular and Biochemical Parasitology 15, 295304.Google Scholar
Martinez-Palomo, A. (1973). Ultrastructural characterization of the cuticle of Onchocerca volvulus. Journal of Parasitology 64, 127–36.Google Scholar
Matthews, B. E. (1978). The passage of larval helminths through tissue barriers. In Symposia of the British Society for Parasitology vol. 18 (ed. Taylor, A. E. R.), pp. 93119. Oxford: Blackwell Scientific Publications Ltd.Google Scholar
Mcbride, O. W. & Harrington, W. F. (1967). Ascaris cuticle collagen: on the disulfide cross-linkages and the molecular properties of the subunits. Biochemistry 6, 1484–98.CrossRefGoogle ScholarPubMed
McGreevy, P. B., Ratiwayanto, S., Tuti, S., McGreevy, M. M. & Dennis, D. T. (1980) Brugia malayi: relationship between anti-sheath antibodies and amicrofilaremia in natives living in an endemic area of South Kalimantan, Borneo. American Journal of Tropical Medicine and Hygiene 29, 553–62.CrossRefGoogle Scholar
McReynolds, L. A., DeSimone, S. & Williams, S. (1985). Cloning and comparison of repeated DNA sequences from the human filarial parasite Brugia malayi and the animal parasite Brugia pahangi. Proceedings of the National Academy of Sciences, USA (in the Press).Google Scholar
Miles, L. E. M., Lipschitz, D. A., Bieber, C. P. & Cook, J. D. (1974). Measurement of serum ferritin by a two-site immunoradiometric assay. Analytical Biochemistry 61, 209–24.Google Scholar
Mole, S. E. & Lane, D. P. (1985). Use of simian virus 40 large T-B-galactosidase fusion proteins in an immunological analysis of simian virus 40 large T antigen. Journal of Virology 54, 703–10.CrossRefGoogle Scholar
Ngu, J. L., Neba, G. A., Leke, R., Titanji, V., Asonganyi, T. & Ndumbe, P. (1981). Selective recovery of living microfilariae from Onchocerca volvulus nodules. Determination of optimal conditions for their culture in vitro for excretory–secretory products. Acta Tropica 38, 261–6.Google Scholar
O'Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry 250, 4007–21.CrossRefGoogle ScholarPubMed
Ogilvie, B. M., Philipp, M., Jungery, M., Maizels, R. M., Worms, M. J. & Parkhouse, R. M. E. (1980). The surface of nematodes and the immune response of the host. In The Host-Invader Interplay (ed Bossche, H. van der), pp. 199204. Amsterdam: Elsevier/North-Holland.Google Scholar
Ogilvie, B. M., Rothwell, T. L. W., Bremner, K. C., Schnitzerling, H. J., Nolan, J. & Keith, R. K. (1973). Acetylcholinesterase secretion by parasitic nematodes. I. Evidence for secretion of the enzyme by a number of species. International Journal for Parasitology 3, 589–97.Google Scholar
Oliver-Gonzales, J. & Morales, F. H. (1945). High-resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry 250, 4007–21.Google Scholar
Oothuman, P., Denham, D. A., MoGreevy, P. B., Nelson, G. S. & Rogers, R. (1979). Successful vaccination of cats against Brugia pahangi with larvae attenuated by irradiation with 10 Krads cobalt 60. Parasite Immunology 1, 209–16.Google Scholar
Ottesen, E. A. (1980). Immunopathology of lymphatic filariasis in man. Springer Seminars in Immunopathology 2, 373–85.CrossRefGoogle Scholar
Ottesen, E. A. (1984). Immunological aspects of lymphatic filariasis and onchocerciasis in man. Transactions of the Royal Society of Tropical Medicine and Hygiene 78 (Suppl.), 918.Google Scholar
Ottesen, E. A., Mendell, N. R., MacQueen, J. M., Weller, P. F., Amos, D. B. & Ward, F. E. (1981). Familial predisposition to filarial infection – not linked to HLA-A or B locus specificities. Acta Tropica 38, 205–16.Google Scholar
Ottesen, E. A., Neva, F. A., Paranjape, R. S., Tripathy, S. P., Thiruvengadam, K. V. & Beaven, M. A. (1979). Specific allergic sensitisation to filarial antigens in tropical eosinophilia syndrome. The Lancet i, 1158–61.CrossRefGoogle Scholar
Ottesen, E. A., Weller, P. F. & Heck, L. (1977). Specific cellular immune unresponsiveness in human filariasis. Immunology 33, 413–21.Google ScholarPubMed
Ottesen, E. A., Weller, P. F., Lunde, M. N. & Hussain, R. (1982). Endemic filariasis on a Pacific island. II. Immunologic aspects: immunoglobulin, complement and specific antifilarial IgG, IgM and IgE antibodies. American Journal of Tropical Medicine and Hygiene 81, 953–61.CrossRefGoogle Scholar
Palmieri, J. R., Connor, D. H., Purnomo, , Dennis, D. T. & Marwoto, H. (1982). Experimental infection of Wuchereria bancrofti in the silvered leaf monkey Presbytis cristatus Eschscholtz, 1821. Journal of Helminthology 56, 243–5.Google Scholar
Parkhouse, R. M. E., Philipp, M. & Ogilvie, B. M. (1981). Characterisation of surface antigens of Trichinella spiralis infective larvae. Parasite Immunology 3, 339–52.Google Scholar
Parkhotjse, R. M. E., Clark, N. W. T., Maizels, R. M. & Denham, D. A. (1985). Brugia pahangi: labelling of secreted antigens with 35S-methionine in vitro. Parasite Immunology (in the Press).Google Scholar
Partono, F. (1982). Elephantiasis and its relation to filarial immunity. Southeast Asian Journal of Tropical Medicine and Public Health 13, 275–9.Google Scholar
Partono, F. (1984). Filariasis in Indonesia: clinical manifestations and basic concepts of treatments and control. Transactions of the Royal Society for Tropical Medicine and Hygiene 78, 912.Google Scholar
Partono, F. (1985). Treatment of elephantiasis in a community with Timorian filariasis. Transactions of the Royal Society for Tropical Medicine and Hygiene 79, 44–6.Google Scholar
Partono, F. & Purnomo, (1978). Clinical features of Timorian filariasis among immigrants to an endemic area in West Flores, Indonesia. Southeast Asian Journal of Tropical Medicine and Public Health 9, 338–43.Google Scholar
Partono, F., Purnomo, , Oemijati, S. & Soewarta, A. (1981). The long-term effects of repeated diethylcarbamazine administration with special reference to microfilaraemia and elephantiasis. Acta Tropica 38, 217–25.Google ScholarPubMed
Partono, F., Purnomo, , Pribadi, W. & Soewarta, A. (1978). Epidemiological and clinical features of Brugia timori in a newly established village, Karakuak, West Flores, Indonesia. American Journal of Tropical Medicine and Hygiene 27, 910–15.Google Scholar
Pery, P., Petit, A., Poulain, J. & Luffau, G. (1974). Phosphorylcholine-bearing components in homogenates of nematodes. European Journal of Immunology 4, 637–41.Google Scholar
Philipp, M., Gomez-Priego, A., Parkhouse, R. M. E., Davies, M. W., Clark, N. W. T., Ogilvie, B. M. & Beltran-Hernandez, F. (1984). Identification of an antigen of Onchocerca volvulus of possible diagnostic use. Parasitology 89, 295309.Google Scholar
Philipp, M., Maizels, R. M., McLaren, D. J., Davies, M. W., Suswillo, R. & Denham, D. A. (1985). Expression of cross-reactive surface antigens by different stages of Brugia pahangi during infections in cats. Transactions of the Royal Society for Tropical Medicine and Hygiene (in the Press).Google Scholar
Philipp, M., Taylor, P. M., Parkhouse, R. M. E. & Ogilvie, B. M. (1981). Immune response to stage-specific surface antigens of the parasitic nematode Trichinella spiralis. Journal of Experimental Medicine 154, 210–15.CrossRefGoogle ScholarPubMed
Philipp, M., Worms, M. J., Maizels, R. M. & Ogilvie, B. M. (1984). Rodent models of filariasis. Contemporary Topics in Immunobiology 12, 275321.Google Scholar
Piessens, W. F. & Partono, F. (1980). Host-vector-parasite relationships in human filariasis. Seminars in Infectious Diseases 3, 131–52.Google Scholar
Piessens, W. F., McGreevy, P. B., Piessens, P. W., McGreevy, M., Koiman, I., Saroso, J. S. & Dennis, D. T. (1980 b). Immune responses in human infections with Brugia malayi. Specific cellular unresponsiveness to filarial antigens. Journal of Clinical Investigation 65, 172–9.Google Scholar
Piessens, W. F., McGreevy, P. B., Ratiwayanto, S., McGreevy, M., Piessens, P. W., Koiman, I., Saroso, J. S. & Dennis, D. T. (1980 a). Immune responses in human infections with Brugia malayi: correlation of cellular and humoral reactions to microfilarial antigens with clinical status. American Journal of Tropical Medicine and Hygiene 29, 563–70.Google Scholar
Piessens, W. F. & Mackenzie, C. D. (1982). Lymphatic filariasis and onchocerciasis. In Immunology of Parasitic Infections (ed. Cohen, S. and Warren, K. S.), pp. 622653. Oxford: Blackwell Scientific Publications Ltd.Google Scholar
Rao, K. R., Venkatanaryana, M., Naidu, Y. D., Narasimham, M. V.V. L., Viswanatham, R. & Rao, C. K. (1984). Transplacental transmission in Bancroftian filariasis. Indian Journal of Medical Research 79, 495–6.Google Scholar
Reddy, M. V. R., Malhotra, A. & Harinath, B. C. (1984). Detection of circulating antigen in Bancroftian filariasis by sandwich ELISA using filarial serum IgG. Journal of Helminthology 58, 259–62.Google Scholar
Rogers, W. P. & Somerville, R. I. (1968). The infectious process and its relation to the development of early parasitic stages of nematodes. Advances in Parasitology 6, 327–48.Google Scholar
Rüther, U., Koenen, M., Sippel, A. E. & Müller-Hill, B. (1982). Exon cloning: immunoenzymatic identification of exons of the chicken lysozyme gene. Proceedings of the National Academy of Sciences, USA 79, 6852–5.Google Scholar
Rüther, U. & Müller-Hill, B. (1983). Easy identification of cDNA clones. European Molecular Biology Organisation Journal 2, 1791–4.Google Scholar
Sasa, M. (1976). Human Filariasis. A Global Survey of Epidemiology and Control. Baltimore: University Park Press.Google Scholar
Schiller, E. L., D'Antonio, R. & Marroquin, H. F. (1980). Intradermal reactivity of excretory and secretory products of onchocercal microfilariae. American Journal of Tropical Medicine and Hygiene 29, 1215–19.Google Scholar
Secher, D. S. (1981). Immunoradiometric assay of human leukocyte interferon using monoclonal antibody. Nature, London 290, 501–3.Google Scholar
Seifter, S. & Harper, E. (1971). The collagenases. In The Enzymes (ed. Boyer, P. D.), pp. 649697. New York: Academic Press.Google Scholar
Singh, R. N. & Sulstone, J. E. (1978). Some observations on molting in Caenorhabditis elegans. Nematologica 24, 6371.Google Scholar
Sutanto, I., Maizels, R. M. & Denham, D. A. (1985). Surface antigens of a filarial nematode: analysis of adult Brugia pahangi surface components and their use in monoclonal antibody production. Molecular and Biochemical Parasitology 15, 203–14.Google Scholar
Vincent, A. L., Ash, L. R. & Frommes, S. P. (1975). The ultrastructure of adult Brugia malayi (Brug 1927) (Nematoda: Filarioidae). Journal of Parasitology 61, 499512.CrossRefGoogle ScholarPubMed
Wartman, W. B. (1947). Filariasis in American armed forces in World War II. Medicine 26, 333–94.Google Scholar
Weil, G. J., Hussain, R., Kumaraswami, V., Tripathy, S. P., Phillips, K. S. & Ottesen, E. A. (1983). Prenatal sensitization to helminth antigens in offspring of parasite-infected mothers. Journal of Clinical Investigation 71, 1124–9.Google Scholar
Wong, M. M. & Guest, M. F. (1969). Filarial antibodies and eosinophilia in human subjects in an endemic area. Transactions of the Royal Society for Tropical Medicine and Hygiene 63, 796800.Google Scholar
Wong, M. M. & Suter, P. F. (1979). Indirect fluorescent antibody test in occult dirofilariasis. American Journal of Veterinary Research 40, 414–20.Google Scholar
Wong, M. M., Fredericks, H. J. & Ramachandran, C. P. (1969). Studies on immunization against Brugia malayi in the rhesus monkey. Bulletin of the World Health Organization 40, 493501.Google ScholarPubMed
World Health Organization (1974). WHO expert committee on filariasis, third report. WHO Technical Report Series No. 542.Google Scholar
World Health Organization (1984). Laboratory workshop on the application of monoclonal antibodies to immunodiagnosis and studies of antigen in filariasis, at the Institut Pasteur, Lille, 14–18 November 1983. Report TDR/FIL/MAB-DIAG/83.3.Google Scholar
Young, R. A. & Davis, R. W. (1983 a). Efficient isolation of genes using antibody probes. Proceedings of the National Academy of Sciences, USA 80, 1194–8.Google Scholar
Young, R. A. & Davis, R. W. (1983 b). Yeast RNA polymerase II genes isolation with antibody probes. Science 222, 778–82.Google Scholar
Young, R. A., Mehra, V., Sweetser, D., Buchanan, T., Clark-Curtiss, J., Davis, R. W. & Bloom, B. R. (1985). Genes for the major protein antigens of the leprosy parasite Mycobacterium leprae. Nature, London 316, 450–1.Google Scholar
Zabeau, M. & Stanley, K. K. (1982). Enhanced expression of cro-β-galactosidase fusion proteins under the control of the PR promoter of bacteriophage lambda. European Molecular Biology Organization Journal 1, 1217–24.CrossRefGoogle ScholarPubMed
Zavala, F., Gwadz, R. W., Collins, F. H., Nussenzweig, R. S. & Nussenzweig, V. (1982). Monoclonal antibodies to circumsporozoite proteins identify the species of malaria parasite in infected mosquitoes. Nature, London 299, 737–8.Google Scholar