Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T22:35:50.211Z Has data issue: false hasContentIssue false

The modes of action of some anti-protozoal drugs

Published online by Cambridge University Press:  06 April 2009

R. E. Howells
Affiliation:
Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA

Extract

In spite of the continuing need for new and improved anti-protozoal drugs for use in man, a considerable contraction of industrially based research on anti-protozoal drugs has occurred in recent years. Newton (1983) reviewed the reasons for this decline and presented a compelling argument that fundamental research on the biology of the parasites is essential for the discovery of leads for the development of a new generation of drugs – a rational chemotherapy. The rapid advance in knowledge of the biochemistry of parasitic protozoa which has occurred in recent years has provided a number of potential leads to new drug development and has permitted a greater understanding of the mode of action of many current drugs. The account of these advances which follows is necessarily selective and relates to protozoan parasites of man.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allison, A. C., & Eugui, E. M., (1982). A radical interpretation of immunity to malaria parasites. Lancet 2, 1431–3.CrossRefGoogle ScholarPubMed
Alves, M. J. M., & Rabinovitch, M., (1983). Destruction of intracellular Trypanosoma cruzi after treatment of infected macrophages with cationic electron carriers. Infection and Immunity 39, 435–8.CrossRefGoogle ScholarPubMed
Arrick, B. A., Griffith, O. W., & Cerami, A., (1981). Inhibition of glutathione synthesis as a chemotherapeutic strategy for trypanosomiasis. Journal of Experimental Medicine 153, 720–5.CrossRefGoogle ScholarPubMed
Bacchi, C. J., (1981). Content, synthesis and function of polyamines in trypanosomatids: relationship to chemotherapy. Journal of Protozoology 28, 20–7.CrossRefGoogle ScholarPubMed
Bhatia, A., & Charet, P., (1984). Action de la chloroquine sur la metabolisme du glutathion chez l'hematie parasitée par Plasmodium berghei. Annales de Parasitologie Humaine et Compariée 59, 317–20.CrossRefGoogle Scholar
Bowman, I. B. R., & Flynn, I. W., (1976). Oxidative metabolism of trypanosomes. In Biology of the Kinetoplastida, Vol. 1 (ed. Lumsden, W. H. R. and Evans, D. A.), pp. 435476. New York: Academic Press.Google Scholar
Brown, R. E., Stancato, F. A., & Wolfe, A. D., (1979). The effects of mefloquine on Escherichia colt. Life Sciences 25, 1857–64.CrossRefGoogle Scholar
Bungener, W., (1974). Einfluss von Allopurinol auf Zykluodauer und Vermehomrmogorate von Plasmodium vinckei in der Ratte. Tropenmedizin und Parasitologie 25, 464–8.Google Scholar
Carson, D. A., & Chang, K. P., (1981). Phosphorylation and anti-leishmanial activity of Formycin B. Biochemical and Biophysical Research Communications 100, 1377–83.CrossRefGoogle ScholarPubMed
Carson, P. E., (1984). 8-aminoquinolines. In Antimalarial Drugs II (ed. Peters, W. and Richards, W. H. G.), pp. 83121. Berlin: Springer Verlag.CrossRefGoogle Scholar
Cerkasovova, A., Cerkasovova, J., Kulda, J., & Demes, P., (1980). Metronidazole action of Tritrichomonas foetus. In The Host Invader Interplay (ed. Van den Bossche, H.), pp. 669–72. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Chevli, R., & Fitch, C. D., (1982). The antimalarial drug mefloquine binds to membrane phospholipids. Antimicrobial Agents and Chemotherapy 21, 581–6.CrossRefGoogle ScholarPubMed
Clark, I. A., Cowden, W. B., & Butcher, G. A., (1983). Free oxygen radical generators in antimalarial drugs. Lancet 1, 234.CrossRefGoogle ScholarPubMed
Clark, I. A., & Hunt, N. H., (1983). Evidence for reactive oxygen intermediates causing haemolysis and parasite death in malaria. Infection and Immunity 39, 16.CrossRefGoogle ScholarPubMed
Clarkson, A. B. Jr, Bacchi, C. J., Mellow, G. H., Nathan, H. C, McCann, P. P., & Sjoerdoma, A., (1983). Efficacy of combinations of difluoromethylornithine and bleomycin in a mouse model of central nervous system African trypanosomiasis. Proceedings of the National Academy of Sciences, USA 80, 5729–33.CrossRefGoogle Scholar
Clarkson, A. B., & Brohn, F. H., (1976). Trypanosomiasis: an approach to chemotherapy by the inhibition of carbohydrate catabolism. Science 194, 204–6.CrossRefGoogle ScholarPubMed
Clarkson, A. B., Grady, R. W., Grossman, S. A., McCallum, R. J., & Brohn, F. H., (1981). Trypanosoma brucei brucei, a systematic screening for alternatives to the salicyl hydroxamic acid glycerol combination. Molecular And Biochemical Parasitology 3, 271–91.CrossRefGoogle Scholar
Davidson, M. W., Griggs, B. G. Jr, Boykin, D. W., & Wilson, W. D., (1975). mefloquine, a clinically useful quinolinemethanol antimalarial which does not significantly bind to DNA. Nature, London 254, 632–4.CrossRefGoogle Scholar
Davidson, M. W., Griggs, B. G., Boykin, D. W., & Wilson, W. D., (1977). Molecular structural effects involved in the interaction of quinolinemethanolamines with DNA. Implications for antimalarial action. Journal of Medicinal Chemistry 20, 1117–22.CrossRefGoogle ScholarPubMed
De Loach, J. R., Wagner, G. G., & Craig, T. M., (1981). Imidocarb dipropionate encapsulation and binding to resealed carrier bovine erythrocytes for potential babesiosis control. Journal of Applied Biochemistry 3, 254–62.Google Scholar
Docampo, R., Cruz, F. S., Muniz, R. P. A., Esquivel, D. M. S., & Vasconcellos, M. E. L., (1978). Generation of free radicals from phenazine methosulphate in Trypanosoma cruzi epimastigotes. Acta tropica 35, 221–8.Google Scholar
Docampo, R., & Moreno, S. N. J., (1984). Free radical metabolites in the mode of action of chemotherapeutic agents and phagocytic cells on Trypanosoma cruzi. Reviews of Infectious Diseases 6, 223–38.CrossRefGoogle ScholarPubMed
Dockrell, H. M., & Playfair, J. H. L. (1983). Killing of blood-stage murine malaria parasites by hydrogen peroxide. Infection and Immunity 39, 456–9.CrossRefGoogle ScholarPubMed
Eckman, J. R., (1984). Glutathione metabolism in malaria infected erythrocytes. In Malaria and the Red Cell (ed. Eaton, J. W. and Brewer, G. J.), pp. 112. New York: Alan R. Bliss Inc.Google Scholar
Eckman, J. R., Modlers, S., Eaton, J. W., Berger, E., & Engel, R. R., (1977). Host heme catabolism in drug-sensitive and drug-resistant malaria. Journal of Laboratory and Clinical Medicine 90, 767.Google ScholarPubMed
Edwards, D. I., (1984). Mechanism of action of antitrichomonal drugs. British Journal of Pharmacology (in the Press.)Google Scholar
Edwards, D. I., Knox, R. J., Rowley, D. A., Skolimowski, I. M., & Knight, R. C., (1980). The biochemistry of nitroimidazole drug action. In The Host-Invader Interplay (ed. Van den Bossche, H.), pp. 673–6. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Etkin, N. L., & Eaton, J. W., (1975). Malaria-induced erythrocyte oxidant sensitivity. In Erythrocyte Structure and Function (ed. Brewer, G. J.), pp. 219. New York: Alan R. Liss Inc.Google Scholar
Evans, D. A., & Brown, R. C., (1973). m-Chlorobenzhydroxamic acid — an inhibitor of cyanide-insensitive respiration in Trypanosoma brucei. Journal of Protozoology 20, 157–60.CrossRefGoogle Scholar
Fahey, R. C, Newton, G. L., Arrick, B., Overdank-Bogart, T., & Aley, S. B., (1984). Entamoeba histolytica: a eukaryote without glutathione metabolism. Science 224, 70–2.CrossRefGoogle ScholarPubMed
Fairfield, A. S., Meshnick, S. R., & Eaton, J. W., (1984). Host superoxide dismutase incorporation by intraerythrocytic Plasmodia. In Malaria and the Red Cell (ed. Eaton, J. W. and Brewer, G. J.), pp. 1323. New York: Alan R. Liss Inc.Google Scholar
Fairlamb, A. H.(1981). Alternate metabolic pathways in protozoan metabolism. (Workshop 1, EMOP 3.) Parasitology 82, 22–3.Google Scholar
Fairlamb, A. H., (1982). Biochemistry of trypanosomiasis and rational approaches to chemotherapy. TIBS 249, 253.Google Scholar
Fairlamb, A. H., & Bowman, I. B. R., (1977). The isolation and characterisations of particulate sn-glycerol-3-phosphate oxidase from Trypanosoma brucei. International Journal of Biochemistry 8, 659–75.CrossRefGoogle Scholar
Fairlamb, A. H., & Bowman, I. B. R., (1980). Uptake of the trypanocidal drug suramin by bloodstream forms of Trypanosoma brucei and its effects on respiration and growth rate in vivo. Molecular and Biochemical Parasitology 1, 315–33.CrossRefGoogle ScholarPubMed
Fitch, C. D., (1983). Mode of action of antimalarial drugs. In Malaria and the Red Cell. Ciba Fdn Symp. 94, p. 222. London: Pitman.Google Scholar
Fitch, C. D., Dutta, P., Kanjananggulpan, P., & Chevli, R., (1984). Ferriprotoporphyrin IX: a mediator of the antimalarial action of oxidants and 4-aminoquinoline drugs. In Malaria and the Red Cell (ed. Eaton, J. W. and Brewer, G. J.), pp. 119–30. New York: Alan R. Liss Inc.Google Scholar
Flower, R. J., Moncada, S., & Vane, J. R., (1980). Analgesics – antipyretics and anti-inflammatory agents; drugs employed in the treatment of gout. In The Pharmacological Basis of Therapeutics, 6th Edn (ed. Goodman Gilman, A., Goodman, L. S. and Gilman, A.), pp. 682728. New York: Macmillan Publishing Co. Inc.Google Scholar
Flynn, I. W., & Bowman, I. B. R., (1974). The action of trypanocidal arsenical drugs on Trypanosoma brucei and Trypanosoma rhodesiense. Comparative Biochemistry and Physiology 48B, 261–73.Google ScholarPubMed
Gillin, F. D., & Reiner, D. S., (1982). Effects of oxygen tension and reducing agents on sensitivity of Giardia lamblia to metronidazole in vitro. Biochemical Pharmacology 31, 3694–7.CrossRefGoogle ScholarPubMed
Gregoriadis, G., & Ryman, B. E., (1972). Fate of protein-containing liposomes injected into rats. An approach to treatment of storage diseases. European Journal of Biochemistry 24, 485–91.CrossRefGoogle ScholarPubMed
Gu, H. M., Lu, B. F., & Qu, Z. X., (1980). Activities of 25 derivatives of artemisinine against chloroquine resistant Plasmodium berghei. Ada Pharmacologica Sinica 1, 4850.Google ScholarPubMed
Gu, H. M., Warhurst, D. C., & Peters, W., (1983). Rapid action of quinghaosu and related drugs on incorporation of [3H]isoleucine by Plasmodium falciparum in vitro. Biochemical Pharmacology 32, 2463–6.CrossRefGoogle ScholarPubMed
Gutteridge, W. E., (1982). Chemotherapy of chagas disease. In Perspectives in Trypanosomiasis Research (ed. Baker, J. R.), pp. 4757. London: John Wiley & Sons.Google Scholar
Gutteridge, W. E., Dave, D., & Richards, W. H. G., (1979). Conversation of dihydroorotate to orotate in parasitic protozoa. Biochimica et Biophysica Acta 582, 390401.CrossRefGoogle Scholar
Gutteridge, W. N., (1980). Prospects for the chemotherapy of chagas disease. In The Host—Invader Interplay (ed. Van den Bossche, H.), pp. 583–94. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Hammond, D. J., & Bowman, I. B. R., (1980). Studies on glycerolkinase and ATP salvages in Trypanosoma brucei. Molecular and Biochemical Parasitology 2, 6391.CrossRefGoogle Scholar
Hanson, W. L., Bradford, M. M., Chapman, W. L., Waits, V. B., McCann, P. P., & Sjoerdoma, A., (1982). α-difluoromethylornitine, a promising lead for preventive chemotherapy for coccidiosis. American Journal of Veterinary Research 43, 1651–3.Google Scholar
Hardman, M. A., Patterson, L. H., Williamson, J., & Brown, J. R., (1983). Targetting of daunorubicin to trypanosomes by carrier molecules: should the carrier be labile. Biochemical Society Transactions 11, 182.CrossRefGoogle Scholar
Ings, R. M. J., McFadzean, J. A., & Ormerod, W. E., (1974). The mode of action of metronidazole in Trichomonas vaginalis and other organisms. Biochemical Pharmacology 15, 1421–9.CrossRefGoogle Scholar
Kelman, S. N., Sullivan, S. G., & Stern, A., (1982). Primaquine mediated oxidative metabolism in the human red cell; lack of dependence on oxyhaemoglobin, H2O2 formation, or glutathione turnover. Biochemical Pharmacology 31, 2409–14.CrossRefGoogle ScholarPubMed
Krieger, J. N., & Rein, M. F., (1982). Zinc sensitivity of Trichomonas vaginalis: in vitro studies and clinical implications. Journal of Infectious Diseases 146, 341–5.CrossRefGoogle ScholarPubMed
Li, Z. L., Gu, H. M., Warhurst, D. C., & Peters, W., (1983). Effects of qinghaosu and related compounds on incorporation of [G-3H] hypoxanthine by Plasmodium falciparum in vitro. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 522–3.CrossRefGoogle ScholarPubMed
Lindmark, D. S., & Muller, M., (1974). Reduction of metronidazole by homogenates of trichomonad flagellates. Journal of Protozoology 21, 436.Google Scholar
Linstead, D. J., (1981). Alternate metabolic pathways in protozan metabolism. Parasitology 82, 20–2.Google Scholar
Lopes, J. N., Cruz, F. S., Docampo, R., Vasconcellos, M. E., Sampais, M. C. R., Pinto, A. V., & Gilbert, B., (1978). In vitro and in vivo evaluation of the toxicity of 1,4-naphthoquinone and 1,2-naphthoquinone derivatives against Trypanosoma cruzi. Annals of Tropical Medicine and Parasitology 72, 523–31.CrossRefGoogle Scholar
Marczak, R., Garrell, T. E., & Muller, M., (1983). Hydrogenosomal ferridoxin of the anaerobic protozoan Tritrichomonas foetus. Journal of Biological Chemistry 258, 12427–33.CrossRefGoogle Scholar
Marr, J. J., Bereno, R. L., & Nelson, D. L., (1978). Antitrypanosomal effect of allopurinol: conversion in vivo of aminopyrazole pyrimidine nucleotides by Trypanosoma cruzi. Science 201, 1018–20.CrossRefGoogle Scholar
McCann, P. P., Bacchi, C. J., Clarkson, A. B. J., Seed, J. R., Nathan, H. C., Amole, B. O., Hutner, S. H., & Sjoerdoma, A., (1981). Further studies on difluoromethylornithine in African trypanosomes. Medical Biology 59, 434–40.Google ScholarPubMed
Meingasener, J. G., Haveles, L., & Meith, H., (1978). Studies on strain sensitivity of Trichomonas vaginalis to metronidazole. British Journal of Venereology 54, 72–6.Google Scholar
Meshnick, S. R., Blobstein, S. H., Grady, R. W., & Cerami, A., (1978). An approach to the development of new drugs for African trypanosomiasis. Journal of Experimental Medicine 148, 569–79.CrossRefGoogle Scholar
Metcalf, B. W., Bey, P., Danzin, C., Jung, M. J., Casara, P., & Vevert, J. P., (1978). Catalytic irreversible inhibition of mammalian ornithine dicarboxylase (EC 4. 1. 1. 17) by substrate and product analogues. Journal of the American Chemical Society 100. 2551–3.CrossRefGoogle Scholar
Muller, M., (1976). Carbohydrate and energy metabolism of Tritrichomonas foetus. In Biochemistry of Parasites and Host–Parasite Relationships, (ed. Van den Bossche, H.), pp. 314. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Muller, M., & Lindmark, D. G., (1976). Uptake of metronidazole and its effect on viability in trichomonads and Entamoeba invadens under anaerobic and aerobic conditions. Antimicrobial Agents and Chemotherapy 9, 696700.CrossRefGoogle ScholarPubMed
Murray, H. W., (1981). Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages. Journal of Experimental Medicine 153, 1302–15.CrossRefGoogle ScholarPubMed
Nabi, Z. F., & Rabinovitch, M., (1984). Inhibition by superoxide dismutase and catalase of the damage of isolated Leishmania mexicana amazonensis by phenazine methosulphate. Molecular and Biochemical Parasitology 10, 297303.CrossRefGoogle Scholar
Nathan, C., Bacchi, C. J., Hutner, S. H., Rescigns, D., McCann, P. P., & Sjoerdoma, A., (1981). Antagonism by polyamines of the curative effects of -difluoromethylornithine in Trypanosoma brucei brucei infections. Biochemical Pharmacology 30, 3010–13.CrossRefGoogle ScholarPubMed
Nelson, D. J., Lafon, S. W., Jones, T. E., Spector, T., Berens, R. L., & Marra, J. J., (1982). The metabolism of formycin B in Leishmania donovani. Biochemical and Biophysical Research Communications 108, 349–54.CrossRefGoogle Scholar
New, R. R. C., Chance, M. L., & Heath, S., (1981 a). The treatment of experimental cutaneous leishmaniasis with liposome-entrapped Pentostam. Parasitology 83, 519–27.CrossRefGoogle Scholar
New, R. R. C., Chance, M. L., & Heath, S., (1981 b). Antileishmanial activity of amphotericin and other antifungal agents entrapped in liposomes. Journal of Antimicrobial Chemotherapy 8, 371–81.CrossRefGoogle ScholarPubMed
New, R. R. C., Chance, M. L., & Heath, S., (1983). Liposome therapy for experimental cutaneous and visceral leishmaniasis. Biology of the Cell 47, 5964.Google Scholar
Newton, B. A., (1972). Trypanocides as biochemical probes. In Chemotherapeutic Agents in the Study of Parasites. Symposia of the British Society of Parasitology, (ed. Taylor, A. E. R.), Vol. 2, pp. 2951. Oxford: Blackwell Scientific Publications.Google Scholar
Newton, B. A., (1983). New strategies in the search for antiprotozoal drugs. In Chemotherapeutic Strategy (ed. Edwards, D. I. and Hiscock, D. R.), pp. 85101. London: Macmillan Press Ltd.CrossRefGoogle Scholar
Nilsson-Ehle, I., Ursing, B., & Nilsson-Ehle, P., (1981). Liquid chromatographic assay for metronidazole and tinidazole: pharmacokinetic and metabolic studies in human subjects. Antimicrobial Agents and Chemotherapy 19, 754–60.CrossRefGoogle ScholarPubMed
Oduro, K. K., Bowman, I. B. R., & Flynn, I. W., (1980). Trypanosoma brucei: preparation and some properties of a multienzyme complex catalysing part of the glycolytic pathway. Experimental Parasitology 50, 240–50.CrossRefGoogle ScholarPubMed
Opperdoes, F. R., Aarsen, P. N., Van der Meer, G., & Borst, P., (1976 b). Trypanosoma brucei: an evaluation of salicyl hydroxamic acid as a trypanocidal drug. Experimental Parasitology 40, 198205.CrossRefGoogle Scholar
Opperdoes, F. R., & Borst, P., (1977). Localisation of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Letters 80, 360–4.CrossRefGoogle Scholar
Opperdoes, F. R., Borst, P., & Fonck, K., (1976 a). The potential use of inhibitors of glycol-3-phosphate oxidase for chemotherapy of African trypanosomes. FEBS Letters 62, 102–72.CrossRefGoogle Scholar
Opperdoes, F., & Nwagwu, M., (1980). Subcellular localisation of glycolytic enzymes in the glycosome of Trypanosoma brucei. In The Host–Invader Interplay (ed. Van den Bossche, H.), pp. 683–6. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Peters, W., Fletcher, K. A., & Staubli, W., (1965). Phagotrophy and pigment formation in a chloroquine resistant strain of Plasmodium berghei Vincke & Lips, 1948. Annals of Tropical Medicine and Parasitology 59, 126–30.CrossRefGoogle Scholar
Peters, W., & Richards, W. H. G. (1983). Antimalarial Drugs, Vols 1 and 2. Handbook of Experimental Pharmacology 68, 1 and 2. Berlin: Springer Verlag.Google Scholar
Pfaller, M. A., & Krogstad, D. J., (1983). Oxygen enhances the antimalarial activity of the imidazoles. American Journal of Tropical Medicine and Hygiene 32, 660–5.CrossRefGoogle ScholarPubMed
Pollack, S., George, J. N., & Crosby, W. H., (1966). Effects of agents simulating the abnormalities of the glucose-6-phosphate-dehydrogenase-deficient red cell on Plasmodium berghei malaria. Nature, London 210, 33–5.CrossRefGoogle ScholarPubMed
Rabinovitch, M., Dedet, J. P., Ryter, A., Robineaux, R., Topper, G., Brunet, E., (1982). Destruction of Leishmania mexicana amazonensis within macrophages in culture by phenazine methosulphate and other electron carriers. Journal of Experimental Medicine 155, 415–31.CrossRefGoogle Scholar
Rainey, P., & Santi, D. V., (1983). Metabolism and mechanisms of action of formycin B in Leishmania. Proceedings of the National Academy of Sciences, USA 80, 288–91.CrossRefGoogle ScholarPubMed
Raventos-Suarez, C., Pollack, S., & Nagel, R. L., (1982). Plasmodium falciparum: inhibition of in vitro growth by disferrioxamine. American Journal of Tropical Medicine and Hygiene 31, 919–22.CrossRefGoogle Scholar
Ryley, J. F., (1982). Treatment of veterinary protozoan infections. In Parasites — their World and Ours (ed. Mettrick, D. F. and Desser, S. S.), pp. 319–26. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Scheibel, L. W., & Adler, A., (1982). Antimalarial activity of selected aromatic chelators, III. 8-hydroxyquinolines (Oxines) substituted in positions 5 and 7, and oxines annelated in position 5, 6 by an aromatic ring. Molecular Pharmacology 22, 140–4.Google Scholar
Seiler, N., Danzin, C., Prakash, N. J., & Koch-Weser, J., (1978). Effects of ornithone decarboxylase inhibitors in vivo. In Enzyme-activated Irreversible Inhibitors (ed. Seiler, N., Jung, M. J. and Koch-Weser, J.), pp. 5571. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Suthipark, U., Krungkrai, J., Jearripipatkul, A., Yuthavong, Y., & Panijpan, B., (1982). Superoxide dismutase (SOD) in mouse red blood cells infected with Plasmodium berghei. Journal of Parasitology 68, 337–9.CrossRefGoogle ScholarPubMed
Trouet, A., Baurain, R., Deprez de Campeneere, D., Masquilier, M., & Pirson, P., (1982). Targetting of antitumour and antiprotozoal drugs by covalent linkage to protein carriers. In Targetting of Drugs (ed. Gregoriadis, G., Senior, J. and Trouet, A.), pp. 1930. New York: Plenum Press.CrossRefGoogle Scholar
Wallis, O. C., (1966). The effect of pentamidine on ribosomes of the parasitic flagellate Crithidia (Strigomonas) oncopelti. Journal of Protozology 13, 234–9.CrossRefGoogle ScholarPubMed
Walter, R. D., (1980). Effect of suramin on phosphorylation-diphosphorylation reactions in Trypanosoma gambiense. Molecular and Biochemical Parasitology 1, 139–42.CrossRefGoogle ScholarPubMed
Wang, C. C., (1981). Recent advances in parasite biochemistry. In Annual Reports in Medical Chemistry (ed. H. T., Hess), pp. 269–79. New York: Academic Press.Google Scholar
Warhurst, D. C., (1972). Chemotherapeutic agents and malaria research. In Chemotherapeutic Agents and Malaria Research. Symposia of the British Society of Parasitology, Vol. 2 (ed. Taylor, A. E. R.), pp. 128. Oxford: Blackwell Scientific Publications.Google Scholar
Warhurst, D. C., (1984). Why are primaquine and other 8-aminoquinolines particularly effective against the mature gametocytes and the hyponozoites of malaria. Annals of Tropical Medicine and Parasitology 78, 165.CrossRefGoogle Scholar
Williamson, J., (1970). Review of chemotherapeutic and chemoprophylactic agents. In The African Trypanosomiases (ed. Mulligan, H. W.), pp. 125221. London: George Allen & Unwin.Google Scholar
Williamson, J., & Scott-Finnigan, T. J., (1978). Trypanocidal activity of antitumor antibiotics and other metabolic inhibitors. Antimicrobial Agents and Chemotherapy 13, 735–44.CrossRefGoogle ScholarPubMed
Williamson, J., Scott-Finnigan, T. J., Hardman, M. A., & Brown, J. R., (1981). Trypanocidal activity of daunorubicin and related compounds. Nature, London 292, 466–7.CrossRefGoogle ScholarPubMed
Willmott, F., Say, J., Downey, D., & Hookham, A., (1983). Zinc and recalcitrant trichominasis. Lancet, 1053.CrossRefGoogle Scholar