Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T21:08:06.499Z Has data issue: false hasContentIssue false

A method for studying the distribution and bionomics of trombiculid mites (Acarina: Trombidiidae)

Published online by Cambridge University Press:  06 April 2009

B. M. Jones
Affiliation:
Department of Zoology, University of Edinburgh*

Extract

(1) The medical importance of trombiculid mites is indicated and reference is made to their geographical distribution.

2. Methods used by investigators for assessing the distribution of the mites in the Far East are discussed as well as methods used in the study of Trombicula autumnalis.

3. A detailed account is given of a light-trap and the method of using it; the reaction of the mites to the trap is discussed.

4. The results of a detailed survey are presented to show the significance of the method in relation to the distribution and bionomics of trombiculid mites.

The main results of this survey are as follows:

(a) The mites are characteristically distributed in pockets of infection.

(b) A study of the ecoclimatic conditions favourable to mites shows that humidity is a limiting factor.

(c) The free-living larval stage disappeared from the soil in October, and nymphs were found in the soil in September. These facts, together with the results of laboratory breeding experiments at room temperatures, which showed that it was normal for nymphs to appear in October, indicate that the nymphal and adult stages over-winter.

(d) Mites are not associated with fruit bushes if the physical conditions of the soil are unfavourable. A tentative explanation is given to account for the frequent association of fruit bushes with miteirritation.

(e) The gregarious habit of clustering is primarily due to a tactile response.

5. It is concluded that the light-trap method offers a new approach to the problem of surveying an area in order to diagnose trombiculid mite infection. It is also of value in obtaining abundant material for laboratory investigations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1950

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, M. (1928). Bull. Mus. Hist. nat. 3, 208–11.Google Scholar
André, M. (1928). Bull. Soc. Zool. Fr. 53, 368–70.Google Scholar
André, M. (1928). C.R. Acad. Sci., Paris, 19, 842–4.Google Scholar
André, M. (1929). Bull. Mus. Hist. nat. 1, 394400.Google Scholar
André, M. (1931). Arch. Zool. Torino, 16, 1355–62.Google Scholar
André, M. (1930). Mém. Soc. zool. fr. 29, 39.Google Scholar
Blake, F. G., Maxcy, K. F., Sadusk, J. F. Jr., Kohls, G. M. & Bell, E. J. (1945). Amer. J. Hyg. 41, 243373. Abstr. Rev. Appl. Ent. B, 34, (144–6.)Google Scholar
Brandis, F. (1897). Festschr. 50en Bestchen Provinz. Irrensanst. Nietleben.Google Scholar
Bruyant, L. (1910). Zool. Anz. 35, 347–52.Google Scholar
Buxton, P. A. (1945). Nature, Lond., 155, 643.Google Scholar
Chittenden, F. H. (1906). Harvest Mites or ‘Chiggers’. Circ. U.S. Bur. Ent. no. 77.CrossRefGoogle Scholar
Department or Public Health, Washington, D.C. (1940). Chigger mites. Publ. Hlth Rep. 55, 1312–14. (Abstr. Rev. Appl. Ent. 28, 246–7.)Google Scholar
Elton, C. & Keay, G. (1936). Parasitology, 28, 110–15.CrossRefGoogle Scholar
Ewing, H. E. (1932). Proc. Biol. Soc. Wash. 45, 99102.Google Scholar
Finnegan, S. (1945). Acariasagentstransmitting Typhus in India, Australia and the Far East. Brit. Mus. (Nat. Hist.), Series no. 16.Google Scholar
Gates, B. A. R. (1932). Parasitology, 24, 143–74.Google Scholar
Gill, D. A., Moule, G. R. & Rick, R. F. (1945). Aust. Vet. J. 22, 2231.CrossRefGoogle Scholar
Heaslip, W. G. (1940). Med. J. Aust. 2, 555–64. (Abstr. Rev. Appl. Ent. B, 30, 51–2).CrossRefGoogle Scholar
Heaslip, W. G. (1941). Med. J. Aust. 1, 380–92. (Abstr. Rev. Appl. Ent. B, 30, 53).CrossRefGoogle Scholar
Hirst, S. (1915). J. Econ. Biol. 10, 7377.Google Scholar
Hirst, S. (1915). J. Econ. Biol. 10, 7982.Google Scholar
Hirst, S. (1926). Ann. Appl. Biol. 13, 140–3.CrossRefGoogle Scholar
Hirst, A. S. (1929). Trans. R. Soc. Trop. Med. Hyg. 22, 451.CrossRefGoogle Scholar
Jayewickreme, S. H. & Niles, W. J. (1946). Nature, Lond., 157, 878.CrossRefGoogle Scholar
Jayewickreme, S. H. & Niles, W. J. (1947). Nature, Lond., 160, 578.CrossRefGoogle Scholar
Keay, G. (1937). J. Anim. Ecol. 6, 23–5.CrossRefGoogle Scholar
Kohls, G. M., Armbrust, C. A., Irons, E. N. & Philip, C. B. (1945). Amer. J. Hyg. 41, 374–96. (Abstr. Rev. Appl. Ent. B, 34, 144–6.)Google Scholar
McCulloch, R. N. (1944). Med. J. Aust. 2, 543–45. (Abstr. Rev. Appl. Ent. B, 34, 141–3.)CrossRefGoogle Scholar
McCulloch, R. N. (1946). Med. J. Aust. 1, 717–38. (Abstr. Rev. Appl. Ent. B, 34, 143–4.)Google Scholar
Miyajima, M. & Okumaria, T. (1917). Kitisato Arch. Exp. Med. 1, 1.Google Scholar
Philip, C. B. & Kohls, G. M. (1945). Amer. J. Hyg. 42, 195203. (Abstr. Rev. Appl. Ent. B, 34, 147–8.)Google Scholar
Portchinsky, I. A. (1914). Mem. Bur. Ent. Sci. Comm. of the Central Board of Land Administration and Agriculture St Petersburg, 11, no. 2. (Abstr. Rev Appl. Ent. A, 2, 502.)Google Scholar
Radford, C. D. (1942). Parasitology, 34, 5581.CrossRefGoogle Scholar
Warburton, C. (1928). Parasitology, 20, 228.CrossRefGoogle Scholar
Womersley, H. (1939). Trans. Roy. Soc. S. Aust. 63, 149–66.Google Scholar