Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-02T23:14:42.816Z Has data issue: false hasContentIssue false

Metalloproteases and egg-hatching in Pediculus humanus, the body (clothes) louse of humans (Phthiraptera: Insecta)

Published online by Cambridge University Press:  25 September 2007

V. M. BOWLES*
Affiliation:
Centre for Animal Biotechnology, School of Veterinary Science, The University of Melbourne, Melbourne, 3010, Australia
A. R. YOUNG
Affiliation:
Centre for Animal Biotechnology, School of Veterinary Science, The University of Melbourne, Melbourne, 3010, Australia
S. C. BARKER
Affiliation:
Parasitology Section, School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, 4072, Australia
*
*Corresponding author: Centre for Animal Biotechnology, School of Veterinary Science, The University of Melbourne, 3010, Australia. Tel: +61 3 8344 4439. Fax: +61 3 9347 4083. E-mail: [email protected]

Summary

To investigate the biochemical components of egg-hatch in the body louse, Pediculus humanus, egg-shell-washings (ESW) were collected during the first 2 h post-hatching and analysed by gelatin SDS-PAGE. These ESW contained proteases with molecular mass in the range of 25–100 kDa; the most abundant proteases were ~25 kDa. The 3 main regions of protease activity in the one-dimensional gelatin SDS-PAGE gels resolved to at least 23 distinct regions of protease activity when analysed by two-dimensional gelatin SDS-PAGE, with iso-electric points spread over the entire 3 to 10 pH range. Mechanistic characterization indicated that the ESW contained proteases of the metallo-class, inhibited by both 1,10-phenanthroline and EDTA. Several protease inhibitors were tested for their ability to inhibit louse egg-hatch in vitro. The metalloprotease inhibitor 1,10-phenanthroline and the aminopeptidase inhibitor bestatin significantly inhibited (P<0·05) louse egg-hatch (100% and 58%, respectively). The presence of metalloproteases at the time of egg-hatch and the inhibition of egg-hatch in P. humanus by metalloprotease inhibitors suggests a crucial role for these proteases in the hatching of this medically important parasite.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berman, E. L., Carter, H. W. and Brodkin, R. (1980). Scanning and light microscopy of the crab louse egg. Scanning Electron Microscopy 3, 517522.Google Scholar
Berman, E. L. and Firstenberg, D. (1979). The human body louse egg--correlative study of anatomy by SEM and light microscopy. Scanning Electron Microscopy 3, 197202.Google Scholar
Counahan, M., Andrews, R., Buttner, P., Byrnes, G. and Speare, R. (2004). Head lice prevalence in primary schools in Victoria, Australia. Journal of the Paediatrics and Child Health 40, 616619.CrossRefGoogle ScholarPubMed
Culpepper, G. H. (1944). The rearing and maintenance of a laboratory colony of the body louse. American Journal of Tropical Medicine 24, 327329.Google Scholar
Culpepper, G. H. (1946). Factors influencing the rearing and maintenace of a laboratory colony of the body louse. Journal of Economic Entomology 39, 472474.CrossRefGoogle Scholar
Culpepper, G. H. (1948). Rearing and maintaining a laboratory colony of body lice on rabbits. American Journal of Tropical Medicine 28, 499504.Google ScholarPubMed
Durden, L. A. and Musser, G. G. (1994). The sucking lice (Insecta: Anoplura) of the world: A taxonomic checklist with records of mammalian hosts and geographical distributions. Bulletin of the American Museum of Natural History 218, 190.Google Scholar
Fournier, P. E., Ndihokubwayo, J. B., Guidran, J., Kelly, P. J. and Raoult, D. (2002). Human pathogens in body and head lice. Emerging Infectious Diseases 8, 15151518.CrossRefGoogle ScholarPubMed
Geier, G. and Zwilling, R. (1998). Cloning and characterization of a cDNA coding for Astacus embryonic astacin, a member of the astacin family of metalloproteases from the crayfish Astacus astacus. European Journal of Biochemistry 253, 796803.CrossRefGoogle ScholarPubMed
Gratz, N. G. (1997). Human Lice: their Prevalence, Control and Resistance to Insecticides. A Review. 1985–1997. WHO/CTD/WHOPES/97/8.Google Scholar
Heussen, C. and Dowdle, E. B. (1980). Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analytical Biochemistry 102, 196202.CrossRefGoogle ScholarPubMed
Hishida, R., Ishihara, T., Kondo, K. and Katsura, I. (1996). Hch-1, a gene required for normal hatching and normal migration of a neuroblast in C. elegans, encodes a protein related to TOLLOID and BMP-1. The EMBO Journal 15, 41114122.CrossRefGoogle Scholar
Houhamdi, L., Lepidi, H., Drancourt, M. and Raoult, D. (2006). Experimental model to evaluate the human body louse as a vector of plague. The Journal of Infectious Diseases 194, 15891596.CrossRefGoogle ScholarPubMed
Jones, K. N. and English, J. C. 3rd (2003). Review of common therapeutic options in the United States for the treatment of Pediculosis capitis. Clinical Infectious Diseases 36, 13551361.CrossRefGoogle ScholarPubMed
Katagiri, C., Maeda, R., Yamashika, C., Mita, K., Sargent, T. D. and Yasumasu, S. (1997). Molecular cloning of Xenopus hatching enzyme and its specific expression in hatching gland cells. International Journal of Developmental Biology 41, 1925.Google ScholarPubMed
Laeremans, H., Demaegdt, H., De Backer, J. P., Le, M. T., Kersemans, V., Michotte, Y., Vauquelin, G. and Vanderheyden, P. M. (2005). Metal ion modulation of cystinyl aminopeptidase. The Biochemical Journal 390, 351357.CrossRefGoogle ScholarPubMed
Leo, N. P. and Barker, S. B. (2005). Unravelling the evolution of the head lice and body lice of humans. Parsitology Research 98, 4447.CrossRefGoogle ScholarPubMed
Maki, N. and Yamashita, O. (2001). The 30 kp protease a responsible for 30-kDa yolk protein degradation of the silkworm, Bombyx mori: Cdna structure, developmental change and regulation by feeding. Insect Biochemistry and Molecular Biology 31, 407413.CrossRefGoogle Scholar
Maurin, M. and Raoult, D. (1996). Bartonella (Rochalimaea) quintana infections. Clinical Microbiology Reviews 9, 273292.CrossRefGoogle ScholarPubMed
Mumcuoglu, K. Y., Zias, J., Tarshis, M., Lavi, M. and Stiebel, G. D. (2003). Body louse remains found in textiles excavated at Masada, Israel. Journal of Medical Entomology 40, 585587.CrossRefGoogle ScholarPubMed
Price, R. D., Hellenthal, R. A. and Palma, R. L. (2003). The Chewing Lice: World Checklist and Biological Overview. Illinois Natural History Survey Special Publication, Illinois.Google Scholar
Rogers, W. P. and Brooks, F. (1977). The mechanism of hatching of eggs of Haemonchus contortus. International Journal for Parasitology 7, 6165.CrossRefGoogle ScholarPubMed
Schaub, G. A. (2001). Lice. In Encyclopedia Reference of Parasitology (ed. Mehlhorn, H.), pp. 339343. Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
Slifer, E. H. (1937). The origin and fate of the membranes surrounding the grasshopper egg; together with some experiments on the source of the hatching enzyme. Quarterly Journal of Microscopical Science 79, 493506.Google Scholar
Tefft, P. M. and Bone, L. W. (1985). Leucine aminopeptidase in eggs of the soybean cyst nematode Heterodera glycines. The Journal of Nematology 17, 270274.Google ScholarPubMed
Xu, Y. Z. and Dresden, M. H. (1986). Leucine aminopeptidase and hatching of Schistosoma mansoni eggs. The Journal of Parasitology 72, 507511.CrossRefGoogle ScholarPubMed
Young, A. R., Mancuso, N. and Bowles, V. M. (1999). Biochemical aspects of egg hatch in endo- and ectoparasites: potential for rational drug design. International Journal for Parasitology 29, 861867.CrossRefGoogle ScholarPubMed
Young, A. R., Mancuso, N., Meeusen, E. N. and Bowles, V. M. (2000). Characterisation of proteases involved in egg hatching of the sheep blowfly, Lucilia cuprina. International Journal for Parasitology 30, 925932.CrossRefGoogle ScholarPubMed
Young, A. R., Meeusen, E. N. and Bowles, V. M. (1996). Characterization of ES products involved in wound initiation by Lucilia cuprina larvae. International Journal for Parasitology 26, 245252.CrossRefGoogle ScholarPubMed