Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T04:44:56.065Z Has data issue: false hasContentIssue false

A mathematical model for a new mechanism of phenotypic variation in malaria

Published online by Cambridge University Press:  19 April 2005

M. RECKER
Affiliation:
Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
R. AL-BADER
Affiliation:
Faculty of Medicine, Imperial College, St Mary's Hospital, London W2 1PG, UK
S. GUPTA
Affiliation:
Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK

Abstract

The Py235 merozoite rhoptry protein of the rodent malaria agent Plasmodium (yoelii) yoeli is encoded by the Py235 multigene family whose members are transcribed during the parasite's asexual life-cycle in a fashion where single schizonts subsequently give rise to sets of merozoites containing distinct Py235 transcripts. Homologues of Py235 are found in other malaria species, and antibodies to both Py235 and P. falciparum homologues inhibit merozoite invasion, suggesting a unique survival strategy involving immune evasion and host adaptation. Using a mathematical approach to model this free-living stage of Plasmodium in interaction with specific antibodies and a heterogeneous red blood cell population, we investigate if, and under what conditions, this mechanism of clonal phenotypic variation can play a role in immune evasion and adaptation to a dynamic erythropoietic environment.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BANNISTER, L. & DLUZEWSKI, A. ( 1990). The ultrastructure of red cell invasion in malaria infections: A review. Blood Cells 16, 257292.Google Scholar
BORRE, M., OWEN, C., KEEN, J., SINHA, K. & HOLDER, A. A. ( 1995). Multiple genes code for high-molecular-mass rhoptry proteins of Plasmodium yoelii. Molecular and Biochemical Parasitology 70, 149155.CrossRefGoogle Scholar
DOLAN, S., MILLER, L. & WELLEMS, T. ( 1990). Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum. Journal of Clinical Investigation 86, 618624.CrossRefGoogle Scholar
DOLAN, S., PROCTOR, J., ALLING, D., OKUBO, Y., WELLEMS, T. & MILLER, L. ( 1994). Glycophorin b as an EBA-175 independent Plasmodium falciparum receptor of human erythrocytes. Molecular Biochemical Parasitology 64, 5563.CrossRefGoogle Scholar
FREEMAN, R., TREJDOSIEWICZ, A. & CROSS, G. ( 1980). Protective monoclonal antibodies recognising stage-specific merozoite antigens of a rodent malaria parasite. Nature, London 284, 366368.CrossRefGoogle Scholar
GALINSKI, M. & BARNWELL, J. ( 1996). Plasmodium vivax: Merozoites, invasion of reticulocytes and considerations for malaria vaccine development. Parasitology Today 12, 2029.CrossRefGoogle Scholar
GALINSKI, M., MEDINA, C., INGRAVALLO, P. & BARNWELL, J. ( 1992). A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell 69, 12131226.CrossRefGoogle Scholar
GRAVENOR, M. B. & LLOYD, A. L. ( 1998). Reply to: Models for the in-host dynamics of malaria revisited: errors in some basic models lead to large over-estimates of growth rates. Parasitology 117, 409410.CrossRefGoogle Scholar
HANDUNETTI, S., MENDIS, K. & DAVID, P. ( 1987). Antigenic variation of cloned Plasmodium fragile in its natural host Macaca sinica. Sequential appearance of successive variant antigenic types. Journal of Experimental Medicine 165, 12691283.Google Scholar
HOLDER, A. & FREEMAN, R. ( 1981). Immunization against blood-stage rodent malaria using purified parasite antigens. Nature, London 294, 361364.CrossRefGoogle Scholar
HOLDER, A., KEEN, J., SINHA, K. & BROWN, K. ( 1991). The 235kd rhoptry protein of Plasmodium yoelii. Acta Leiden 60, 101106.Google Scholar
HOWARD, R. ( 1984). Antigenic variation of blood stage malaria parasites. Philosophical Transactions of the Royal Society London, B 307, 141158.CrossRefGoogle Scholar
KEEN, J., HOLDER, A., PLAYFAIR, J., LOCKYER, M. & LEWIS, A. ( 1990). Identication of the gene for a Plasmodium yoelii rhoptry protein. Multiple copies in the parasite genome. Molecular and Biochemical Parasitology 42, 241246.CrossRefGoogle Scholar
KEEN, J., SINHA, K., BROWN, K. & HOLDER, A. ( 1994). A gene coding for a high-molecular mass rhoptry protein of Plasmodium yoelii. Molecular and Biochemical Parasitology 65, 171177.CrossRefGoogle Scholar
KHAN, S., JARRA, W. & PREISER, P. ( 2001). The 235 kDa rhoptry protein of Plasmodium (yoelii) yoelii: Function at the junction. Molecular and Biochemical Parasitology 117, 110.CrossRefGoogle Scholar
LEVIN, S., DUSHOFF, J. & PLOTKIN, J. B. ( 2004). Evolution and persistence of influenza A and other diseases. Mathematical Biosciences 188, 1728.CrossRefGoogle Scholar
OGUN, S. & HOLDER, A. ( 1996). A high molecular mass Plasmodium yoelii rhoptry protein binds to erythrocytes. Molecular and Biochemical Parasitology 76, 321324.CrossRefGoogle Scholar
OGUN, S., SCOTT-FINNIGAN, T., NARUM, D. & HOLDER, A. ( 2000). Plasmodium yoelii: Effects of red blood cell modification and antibodies on the binding characteristics of the 235-kDa rhoptry protein. Experimental Parasitology 95, 187195.CrossRefGoogle Scholar
OWEN, C., SINHA, K., KEEN, J., OGUN, S. & HOLDER, A. ( 1999). Chromosomal organisation of a gene family encoding rhoptry proteins in Plasmodium yoelii. Molecular and Biochemical Parasitology 99, 183192.CrossRefGoogle Scholar
PREISER, P., JARRA, W., CAPIOD, T. and SNOUNOU, G. ( 1999). A rhoptry-protein-associated mechanism of clonal phenotypic variation in rodent malaria. Nature, 398, 618622.CrossRefGoogle Scholar
RAYNER, J. C., GALINSKI, M., INGRAVALLO, P. & BARNWELL, J. W. ( 2000). Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. Proceedings of the National Academy of Sciences, USA 97, 96489653.CrossRefGoogle Scholar
RECKER, M., NEE, S., BULL, P., KINYANJUI, S., MARSH, K., NEWBOLD, C. & GUPTA, S. ( 2004). Transient cross-reactive immune responses can maintain antigenic variation in malaria. Nature, London 429, 555558.CrossRefGoogle Scholar
SAUL, A. ( 1998). Models for the in-host dynamics of malaria revisited: errors in some basic models lead to large over-estimates of growth rates. Parasitology 117, 405407.CrossRefGoogle Scholar
SIM, B., CHITNIS, C., WASNIOWSKA, K., HADLEY, T. & MILLER, L. ( 1994). Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 264, 19411944.CrossRefGoogle Scholar
SNOUNOU, G. & PREISER, P. ( 2000). Malaria multigene families: The price of chronicity. Parasitology Today 16, 2830.CrossRefGoogle Scholar
TRIGLIA, T., DURAINSINGH, M. T., GOOD, R. T. & COWMAN, A. F. ( 2005). Reticulocyte-binding protein homologue 1 is required for sialic acid-dependent invasion into human erythrocytes by Plasmodium falciparum. Molecular Microbiology 55, 162174.CrossRefGoogle Scholar