Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T21:10:13.420Z Has data issue: false hasContentIssue false

Latent infections in avian malaria in relation to the production of drug-resistance

Published online by Cambridge University Press:  06 April 2009

Elspeth W. McConnachie
Affiliation:
Molteno Institute, University of Cambridge

Extract

1. No resistance to paludrine or to sulphadiazine was obtained after treating latent infections of Plasmodium gallinaceum in chickens with twice daily doses of 20 mg./20 g. of sulphadiazine over periods of 171, 178 and 190 days.

2. No resistance to paludrine was obtained after treating a latent infection of P. relictum in a canary over a period of 1 year with doses of paludrine increasing from 0·05 mg./20 g. once daily to 1·0 mg./ 20 g. twice daily.

3. It is considered that if drug-resistance arises by mutation and selection, then resistance should arise more readily when a large number of rapidly multiplying parasites is treated with a drug than when the population treated is small, with a low reproduction rate, i.e. the failure to obtain resistant strains of malaria by prolonged treatment of latent infections with large amounts of drug, lends support to the theory of the origin of resistant strains of malaria by the selection of resistant mutants.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1951

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bishop, A. & Birkett, B. (1947). Acquired resistance to paludrine in Plasmodium gallinaceum. Acquired resistance and persistence after passage through the mosquito. Nature, Lond., 159, 884.CrossRefGoogle Scholar
Bishop, A. & Birkett, B. (1948). Drug-resistance in Plasmodium gallinaceum and the persistence of paludrine-resistance after mosquito transmission. Parasitology, 39, 125.CrossRefGoogle ScholarPubMed
Bishop, A. & McConnachie, E. W. (1948). Resistance to sulphadiazine and ‘paludrine’ in the malaria parasite of the fowl (P. gallinaceum). Nature, Lond., 162, 541.CrossRefGoogle ScholarPubMed
Bishop, A. & McConnachie, E. W. (1950 a). Sulphadiazine-resistance in Plasmodium gallinaceum and its relation to other antimalarial compounds. Parasitology, 40, 163.CrossRefGoogle ScholarPubMed
Bishop, A. & McConnachie, E. W. (1950 b). Cross-resistance between sulphanilamide and paludrine (proguanil) in a strain of Plasmodium gallinaceum resistant to sulphanilamide. Parasitology, 40, 176.CrossRefGoogle Scholar
Bratton, A. C. & Marshall, E. K. (1939). A new coupling component for sulfanilamide determination. J. Biol. Chem. 128, 537.CrossRefGoogle Scholar
Coatney, G. R. & Cooper, W. C. (1944). The prophylactic effect of sulfadiazine and sulfaguanidine against mosquito-borne Plasmodium gallinaceum in the domestic fowl. (Preliminary report). Publ. Hlth Rep., Wash., 59, 1455.CrossRefGoogle Scholar
Coggeshall, L. T., Porter, R. J. & Laird, R. L. (1944). Prophylactic and curative effects of certain sulfonamide compounds on exoerythrocytic stages in Plasmodium gallinaceum malaria. Proc. Soc. Exp. Biol., N.Y., 57, 286.CrossRefGoogle Scholar
Davey, D. G. (1946). The use of avian malaria for the discovery of drugs effective in the treatment and prevention of human malaria. II. Drugs for causal prophylaxis and radical cure or the chemotherapy of exo-erythrocytic forms. Ann. Trop. Med. Parasit. 40, 453.CrossRefGoogle ScholarPubMed
Demerec, M. (1945). Production of staphylococcus strains resistant to various concentrations of penicillin. Proc. Nat. Acad. Sci., Wash., 31, 16.CrossRefGoogle ScholarPubMed
Edeson, J. F. B. & Field, J. W. (1950). Proguanil-resistant falciparum malaria in Malaya. Brit. Med. J. 1, 147.CrossRefGoogle ScholarPubMed
Field, J. W. & Edeson, J. F. B. (1949). Paludrine resistant falciparum malaria. Trans. Roy. Soc. Trop. Med. Hyg. 43, 233.CrossRefGoogle Scholar
Fisher, S. H., Troast, L., Waterhouse, A. & Shannon, J. A. (1943). The relation between chemical structure and physiological disposition of a series of substances allied to sulfanilamide. J. Pharmacol. 79, 373.Google Scholar
Fulton, J. D. (1942). Attempts to prepare in fowls a strain of Plasmodium gallinaceum resistant to plasmoquine. Ann. Trop. Med. Parasit. 36, 75.CrossRefGoogle Scholar
Hawking, F. & Perry, W. L. M. (1948). Resistance to proguanil (paludrine) in a mammalian malaria parasite (Plasmodium cynomolgi). Lancet, 2, 850.CrossRefGoogle Scholar
Kirby, W. M. M. & Rantz, L. A. (1943). Quantitative study of sulfonamide resistance. J. Exp. Med. 77, 29.CrossRefGoogle ScholarPubMed
Knoppers, A. T. (1947). Acquired resistance (twofold) to quinine in Plasmodium gallinaceum. Nature, Lond., 160, 606.CrossRefGoogle ScholarPubMed
Kritschewski, I. L. & Rubinstein, P. L. (1932). Ueber die Medikamentfestigkeit der Erreger von Vogelmalaria (Plasmodium praecox). Z. Immun-Forsch. 76, 506.Google Scholar
Lourie, E. M. (1935). Failure to promote drug-resistance in Plasmodium cathemerium by prolonged administration of quinine or plasmoquine. Ann. Trop. Med. Parasit. 29, 421.CrossRefGoogle Scholar
Oakberg, E. F. & Luria, S. E. (1947). Mutations to sulfonamide resistance in Staphylococcus auieus. Genetics, 32, 249.CrossRefGoogle Scholar
Rollo, I. M., Williamson, J. & Lourie, E. M. (1948). Acquired paludrine-resistance in Plasmodium gallinaceum. II. Failure to produce such resistance by prolonged treatment of latent infections. Ann. Trop. Med. Parasit. 42, 241.CrossRefGoogle Scholar
Schmidt, L. H., Genther, C. S., Fradkin, R. & Squires, W. (1949). Development of resistance to chlorguanide (paludrine) during treatment of infections with Plasmodium cynomolgi. J. Pharmacol. 95, 382.Google ScholarPubMed
Seaton, D. R. & Adams, A. R. D. (1949). Acquired resistance to proguanil in Plasmodium falciparum. Lancet, 2, 323.CrossRefGoogle ScholarPubMed
Seaton, D. R. & Lourie, E. M. (1949). Acquired resistance to proguanil (paludrine) in Plasmodium vivax. Lancet, 1, 394.CrossRefGoogle ScholarPubMed
Sergent, Et. & Ed, . (1921 a). Etude expérimentale du paludisme. Paludisme des oiseaux (Plasmodium relictum). Bull. Soc. Path. exot. 14, 72.Google Scholar
Sergent, Et. & Ed, . (1921 b). Etude expérimentale du paludisme. Arch. Inst. Pasteur Afr. N. 1, 1.Google Scholar
Tate, P. & Vincent, M. (1934). The susceptibility of autogenous and anautogenous races of Culex pipiens to infection with avian malaria (Plasmodium relictum). Parasitology, 26, 512.CrossRefGoogle Scholar
Thompson, P. E. (1948). On the ability of Plasmodium lophurae to acquire resistance to chlorguanide, camoquin and chloroquine. J. Infect. Dis. 83, 250.CrossRefGoogle ScholarPubMed
Williamson, J. & Lourie, E. M. (1947). Acquired resistance to paludrine in Plasmodium gallinaceum. I. Development of resistance to paludrine and failure to develop resistance to certain other antimalarials. Ann. Trop. Med. Parasit. 41, 278.CrossRefGoogle ScholarPubMed
Williamson, J., Bertram, D. S. & Lourie, E. M. (1947) Acquired resistance to paludrine in Plasmodium gallinaceum. Effects of paludrine and other antimalarials. Nature, Lond., 159, 885.CrossRefGoogle Scholar