Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-04T19:26:09.518Z Has data issue: false hasContentIssue false

Isolation and antigen analysis of surface tegument membranes from schistosomula of Schistosoma mansoni

Published online by Cambridge University Press:  06 April 2009

D. W. Taylor
Affiliation:
Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP
Pamela Z. Wells
Affiliation:
Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP

Summary

The outer tegument membranes of Schistosoma mansoni schistosomula have been removed by mechanical disruption in a hypotonic salt solution and partially purified by differential and sucrose density gradient centrifugation. Fractionation was monitored by measuring increase in specific activity of bound [125I] wheat-germ agglutinin (WGA), alkaline phosphatase and calcium-stimulated ATPase. Two-dimensional IEF/SDS polyacrylamide gel electrophoresis was used to analyse the peptide composition of the isolated membranes and to compare and contrast with lactoperoxidase/glucose oxidase surface labelled peptides. At least 35 surface-labelled peptides were resolved on the two-dimensional maps: all were also present in the membrane material recovered from the sucrose gradient. Western blot analysis demonstrated a marked heterogeneity in the antibody response of infected human patients to individual membrane antigens. The antigenic profile of membranes isolated from cercariae, 18 and 96 h schistosomula were compared using Western blots: some minor differences were observed between the three preparations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avruch, J. & Wallach, D. F. H. (1971). Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells. Biochimica et biophysica acta 233, 334–47.Google Scholar
Bogitsch, B. J. & Krupa, P. L. (1971) Schistosoma mansoni and Haematoloechus medioplexus: Nucleoside diphosphatase localisation in the tegument, Experimental Parasitology 30, 418–25.CrossRefGoogle Scholar
Butterworth, A. E., Dalton, P. R., Dunne, D. W., Mugambi, M., Ouma, J. H., Richardson, B. A., Arap-Siongok, T. K. & Sturrock, R. F. (1984). Immunity after treatment of human schistosomiasis mansoni. 1. Study design, pretreatment observations and results of treatment. Transactions of the Royal Society for Tropical Medicine and Hygiene 78, 108–23.Google Scholar
Butterworth, A. E., Taylor, D. W., Veith, M. C., Vadas, M. A., Dessein, A., Sturrock, R. F. & Wells, E. (1982). Studies on the mechanisms of immunity in human schistosomiasis. Immunological Reviews 61, 539.CrossRefGoogle ScholarPubMed
Capron, A., Dessaint, J.-P., Capron, M., Joseph, M. & Torpier, C. (1982). Effector mechanisms of immunity to schistosomes and their regulation. Immunological Reviews 61, 4166.Google Scholar
Cesari, I. M., Simpson, A. J. G. & Evans, W. H. (1981). Properties of a series of tegumental membrane-bound phosphohydrolase activities of Schistosoma mansoni. The Biochemical Journal 198, 467–73.Google Scholar
Chang, K. T., Bennett, V. & Cuatrecasas, P. (1975). Membrane receptors as general markers for plasma membrane isolation procedures. Journal of Biological Chemistry 250, 488500.Google Scholar
Clegg, J. A., Smithers, S. R. & Terry, R. J. (1971). Acquisition of human antigens by Schistosoma mansoni during cultivation in vitro. Nature, London 232, 653–4.Google Scholar
Cordingley, J. S., Taylor, D. W., Dunne, D. & Butterworth, A. E. (1983). cDNA clone banks from the parasite Schistosoma mansoni: isolation of clones containing a potentially immunodiagnostic antigen gene. Gene 26, 2539.Google Scholar
Dean, D. A. & Sell, K. W. (1972). Surface antigens on Schistosoma mansoni. II: Adsorption of a Forssman-like host antigen by schistosomula. Clinical and Experimental Immunology 12, 525–40.Google Scholar
Dessein, A., Samuelson, J. C., Butterworth, A. E., Hogan, M., Sherry, B. A., Vadas, M. A. & David, J. R. (1981). Immune evasion by Schistosoma mansoni: loss of susceptibility to antibody or complement-dependent eosinophil attack by schistosomula cultured in medium free of macromolecules. Parasitology 82, 357–74.Google Scholar
Dissous, C., Dissous, C. & Capron, A. (1981). Isolation and characterisation of surface antigens from Schistosoma mansoni schistosomula. Molecular and Biochemical Parasilology 3, 215–25.Google Scholar
Gitter, B. D. & Damian, R. T. (1982). Murine alloantigen acquisition by schistosomula of Schistosoma mansoni: Further evidence for the presence of K, D and I region gene products on the tegumental surface. Parasite Immunology 4, 383–94.CrossRefGoogle Scholar
Goldring, O. L., Clegg, J. A., Smithers, S. R. & Terry, R. J. (1976). Acquisition of human blood group antigens by Schistosonia mansoni. Clinical and Experimental Immunology 26, 181–7.Google Scholar
Hockley, D. J. & McLaren, D. J. (1973). Schistosoma mansoni: changes in the outer membrane of the tegument during development from cercariae to adult worm. International Journal for Parasitology 3, 1325.Google Scholar
Hunter, W. M. & Greenwood, F. C. (1962). Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature, London 194, 495–6.Google Scholar
Kessler, S. W. (1975). Rapid isolation of antigens from cells with a staphylococcal protein A-antibody absorhant: Parameters of the interaction of antibody—antigen complexes with protein A. Journal of Immunology 115, 1617–24.Google Scholar
Kusel, J. R. (1970). Studies on the surfaces of cercariae and schistosomula of Schistosoma mansoni. Parasitoiogy 61, 1129–32.Google Scholar
Kusel, J. R. (1972). Protein composition and protein synthesis in the surface membranes of Schistosonia mansoni. Parasitoiogy 65, 5569.CrossRefGoogle Scholar
Laemmli, U. K. (1979). Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature, London 227, 680–4.Google Scholar
Lerner, R. A. (1982). Tapping the immunological repertoire to produce antibodies of predetermined specificity. Nature, London 299, 592–7.Google Scholar
McDiarmid, S. S., Dean, L. L. & Ppdesta, R. B. (1983). Sequential removal of outer and inner surface bilayers of the surface epithelial syncitium of Schistosoma mansoni. Molecular and Biochemical Parasitology 7, 141–5.CrossRefGoogle Scholar
McLaren, D. J., Clegg, J. A. & Smithers, S. R. (1975). Acquisition of host antigens by young Schistosomula manson in mice: correlation with failure to bind in vitro. Parasitology 70, 6775.CrossRefGoogle Scholar
McLaren, D. J., Hockley, D. J., Goldring, O. L. & Hammond, B. J. (1978). A freeze fracture study of developing tegumental outer membrane of Schistosoma mansoni. Parasitology 76, 327–48.CrossRefGoogle ScholarPubMed
McLaren, D. J. & Terry, R. J. (1982). The protective role of acquired host antigens during schistosome maturation. Parasite Immunology 4, 129–48.Google Scholar
Morris, G. P. & Threadgold, L. T.(1968). Ultra-structureofthe tegument of adult Schistosoma mansoni. Journal of Parasitology 54, 1527.Google Scholar
O'Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry 250, 4007–21.Google Scholar
Podesta, R. B. & McDiarmid, S. S. (1982). Enrichment and partial enzyme characterization of ATPase activity associated with the outward-facing membrane of the surface epithelial syncytium of Schistosonza mansoni. Molecular and Biochemical Parasitology 6, 225–35.Google Scholar
Ramalho-Pinto, F. J., Gazzinelli, G., Howells, R. E., Moto-Santos, T. A., Figueiredo, E. A. & Pellegrino, J. (1974). Schistosoma manuoni: a defined system for the step-wise transformation of the cercariae into schistosomula in vitro. Experimental Parasitology 36, 360–72.Google Scholar
Roberts, S. M., Aitken, R.Vojvodic, M., Wells, E. & Wilson, R. A. (1983 a). Identification of exposed components on the surface of adult Schistosoma mansoni by lactoperoxidase catalyzed iodination. Molecular and Biochemical Parasitology 9, 129–43.Google Scholar
Roberts, S. M., MacGregor, A. N., Vojvodic, M., Wells, E., Crabtree, J. E. & Wilson, R. A. (1983 b). Tegument surface membranes of adult Schislosoma mansoni: development of a method for their isolation. Molecular and Bioche Parasitology 9, 105–27.CrossRefGoogle ScholarPubMed
Ruppel, A. (1978). A study of surface proteins in parasite Schistosoma mansoni. Ph.D. thesis, University of Freiburg, GFR.Google Scholar
Samuelson, J. C. & Caulfield, J. P. (1982). Loss of covalently labelled glycoproteins and glycolipids from the surface of newly transformed schistosomula of Schistosoma mansoni. Journal of Cell Biology 94, 363–9.CrossRefGoogle ScholarPubMed
Shah, J. & Ramasamy, R. (1982). Surface antigens on cereariae. schistosomula and adult worms of Schistosoma mansoni. International Journal for Parasitology 12, 451–61.Google Scholar
Sher, A., Hall, B. F. & Vadas, M. A. (1978). Acquisition of murine major histocompatibility complex gene products by schistosomula of Schistosoma mansoni. Journal of Experimenlal Medicine 148, 4657.Google Scholar
Simpson, J. G., James, S. L. & Sher, A. (1983). Identification of surface antigens of schistosomula of Schistosoma mansoni recognised by antibodies from mice immunised by chronic infection and exposure to highly irradiated cercariae. Infection and Immunity 41, 591–7.Google Scholar
Simpson, A. J. G., Schryer, M. D., Cesari, I. M., Evans, W. H. & Smithers, S. R. (1981). Isolation and partial characterization of the tegumental outer membrane of adult Schistosoma mansoni. Parasitology 83, 163–77.CrossRefGoogle ScholarPubMed
Simpson, A. J. G. & Smithers, S. R. (1980). Characterization of the exposed carbohydrates on the surface membrane of adult Schistosoma mansoni by analysis of lectin binding. Parasitology 81, 115.Google Scholar
Smithers, S. R., McLaren, D. J. & Ramalho-Pinto, F. J. (1977). Immunity to schistosomes: The Target. American Journal of Tropical Medicine and Hygiene 26, 1119Google Scholar
Smithers, S. R. & Terry, R. J. (1976). The immunology of schistosomiasis. Advances in Parasitology 14, 399422.Google Scholar
Smithers, S. R., Terry, R. J. & Hockley, D. J. (1969). Host antigens in schistosomiasis. Proceedings of the Royal Society, B 171, 483–94.Google ScholarPubMed
Snary, D., Smith, M. A. & Clegg, J. A. (1980). Surface proteins of Schistosoma mansoni and their expression during morphogenesis. European Journal of Immunology 10, 573–5.CrossRefGoogle ScholarPubMed
Taylor, D. W., Cordingley, J. S. & Butterworth, A. E. (1984). Immunoprecipitation of surface antigen precursors from Schistosoma mansoni messenger RNA in vitro translation products. Molecular and Biochemical Parasitology 10, 305–18.CrossRefGoogle ScholarPubMed
Taylor, D. W., Hayunga, E. G., Murrell, K. D. & Vannier, W. E. (1978). Isolation of tegument membranes from Schistosoma mansoni. Parasitology 77, xlviii.Google Scholar
Taylor, D. W., Hayunga, E. G. & Vannier, W. E. (1981). Surface antigens of Schistosoma mansoni. Molecular and Biochemical Parasitology 3, 157–68.CrossRefGoogle ScholarPubMed
Thorne, K. J. I., Free, J., Franks, D. & Oliver, R. C. (1982). The mechanism of Fc-mediated interaction of eosinophils with immobilised immune complexes. 11. Identification of two membrane proteins modified by the interaction. Journal of Cell Science 56, 357–69.Google Scholar
Tsang, V. C., Peralta, J. M. & Simons, P. R. (1983). Enzyme-linked immunoelectrotransfer blot techniques (EITB) for studying the specificities of antigens and antibodies separated by gel electrophoresis. Methods in Enzymology 62, 377–91.Google Scholar
Wheater, P. R. & Wilson, R. A. (1976). The tegument of Schistosoma mansoni: a histochemical investigation. Parasitology 72, 99109.Google Scholar
Young, C. R., Schmitz, H. E. & Atassi, M. Z. (1983). Antibodies with specificities to preselected protein regions evoked by free synthetic peptides representing protein antigenic sites or other surface locations; demonstration with myoglobin. Molecular Immunology 20, 567–70.CrossRefGoogle ScholarPubMed