Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T00:15:35.308Z Has data issue: false hasContentIssue false

Intercontinental distribution of a new trypanosome species from Australian endemic Regent Honeyeater (Anthochaera phrygia)

Published online by Cambridge University Press:  22 March 2016

JAN ŠLAPETA*
Affiliation:
Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
VICTORIA MORIN-ADELINE
Affiliation:
Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia
PAUL THOMPSON
Affiliation:
Taronga Zoo, Taronga Conservation Society Australia, Bradleys Head Road, Mosman, New South Wales 2088, Australia
DENISE MCDONELL
Affiliation:
Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia
MICHAEL SHIELS
Affiliation:
Taronga Zoo, Taronga Conservation Society Australia, Bradleys Head Road, Mosman, New South Wales 2088, Australia
KATRINA GILCHRIST
Affiliation:
Faculty of Veterinary Science, The University of Sydney, New South Wales 2006, Australia
JAN VOTÝPKA
Affiliation:
Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
LARRY VOGELNEST
Affiliation:
Taronga Zoo, Taronga Conservation Society Australia, Bradleys Head Road, Mosman, New South Wales 2088, Australia
*
*Corresponding author. Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney, McMaster Building B14, New South Wales 2006, Australia. E-mail: [email protected]

Summary

Establishing a health screening protocol is fundamental for successful captive breeding and release of wildlife. The aim of this study was to undertake a parasitological survey focusing on the presence of trypanosomes in a cohort of Regent Honeyeaters, Anthochaera phrygia, syn. Xanthomyza phrygia (Aves: Passeriformes) that are part of the breeding and reintroduction programme carried out in Australia. We describe a new blood parasite, Trypanosoma thomasbancrofti sp. n. (Kinetoplastida: Trypanosomatidae) with prevalence of 24·4% (20/81) in a captive population in 2015. The sequence of the small subunit rRNA gene (SSU rDNA) and kinetoplast ultrastructure of T. thomasbancrofti sp. n. are the key differentiating characteristics from other Trypanosoma spp. T. thomasbancrofti sp. n. is distinct from Trypanosoma cf. avium found in sympatric Noisy Miners (Manorina melanocephala). The SSU rDNA comparison suggests an intercontinental distribution of T. thomasbancrofti sp. n. and Culex mosquitoes as a suspected vector. Currently, no information exists on the effect of T. thomasbancrofti sp. n. on its hosts; however, all trypanosome-positive birds remain clinically healthy. This information is useful in establishing baseline health data and screening protocols, particularly prior to release to the wild.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Apanius, V. (1991). Avian trypanosomes as models of hemoflagellate evolution. Parasitology Today 7, 8790.Google Scholar
Baker, J. R. (1976). Biology of the trypanosomes of birds. In Biology of the Kinetoplastida (ed. Lumsden, W. H. R., ), pp. 131174. Academic Press, London, UK.Google Scholar
Bennett, G. F. (1961). On the specificity and transmission of some avian trypanosomes. Canadian Journal of Zoology 39, 1733.Google Scholar
Bennett, G. F. and Fallis, A. M. (1960). Blood parasites of birds Algonquin Park, Canada, and a discussion of their transmission. Canadian Journal of Zoology 38, 261273.Google Scholar
Bennett, G. F., Earle, R. A. and Squires-Parsons, D. (1994 a). Trypanosomes of some sub-Saharan birds. The Onderstepoort Journal of Veterinary Research 61, 263271.Google ScholarPubMed
Bennett, G. F., Siikamaki, P., Ratti, O., Allander, K., Gustafsson, K. and Squires-Parsons, D. (1994 b). Trypanosomes of some Fennoscandian birds. Memórias do Instituto Oswaldo Cruz 89, 531537.Google Scholar
Bennett, G. F., Squires-Parsons, D. and Poldmaa, T. (1994 c). The species of Haemoproteus, Leucocytozoon and Trypanosoma of the Australian honeyeater family Meliphagida (Aves: Passeriformes). Memoirs of the Queensland Museum 37, 1318.Google Scholar
Breinl, A. (1913). Parasitic protozoa encountered in the blood of Australian native animals. Report of the Australian Institute of Tropical Medicine for 1911 (April, 1913), 3038.Google Scholar
Clark, N. J., Olsson-Pons, S., Ishtiaq, F. and Clegg, S. M. (2015). Specialist enemies, generalist weapons and the potential spread of exotic pathogens: malaria parasites in a highly invasive bird. International Journal for Parasitology 45, 891899.Google Scholar
Cleland, J. B. and Johnston, T. H. (1910). The haematozoa of Australian birds - No. I. Transactions and Proceedings and Report of the Royal Society of South Australia 34, 100114.Google Scholar
Cleland, J. B. and Johnston, T. H. (1911). The haematozoa of Australian birds - No. II. Journal of the Proceedings of the Royal Society of New South Wales 45, 415444.Google Scholar
Crusz, H. (1984). Parasites of endemic and relic vertebrates: a biogeographical review. In Ecology and Biogeography in Sri Lanka (Series: Monographiae Biologicae, Vol. 57) (ed. Fernando, C. H.), pp. 321351. Dr W. Junk Publishers, Kluwer Academic Publishing Group, Hague.Google Scholar
Dirie, M. F., Wallbanks, K. R., Molyneux, D. H. and McNamara, J. (1991). Comparison of Trypanosoma grayi-like isolates from west and east Africa. Annals of Tropical Medicine and Parasitology 85, 4952.Google Scholar
Driskell, A. C. and Christidis, L. (2004). Phylogeny and evolution of the Australo-Papuan honeyeaters (Passeriformes, Meliphagidae). Molecular Phylogenetics and Evolution 31, 943960.CrossRefGoogle ScholarPubMed
Fleiss, J. L., Levin, B. and Paik, M. C. (2013). Statistical Methods for Rates and Proportions. Wiley, Hoboken, NJ.Google Scholar
Franklin, D. C., Menkhorst, P. W. and Robinson, J. L. (1989). Ecology of the Regent honeyeater (Xanthomyza phrygia). Emu 89, 140154.Google Scholar
Gardner, J. L., Trueman, J. W., Ebert, D., Joseph, L. and Magrath, R. D. (2010). Phylogeny and evolution of the Meliphagoidea, the largest radiation of Australasian songbirds. Molecular Phylogenetics and Evolution 55, 10871102.Google Scholar
Haag, J., O'hUigin, C. and Overath, P. (1998). The molecular phylogeny of trypanosomes: evidence for an early divergence of the Salivaria. Molecular and Biochemical Parasitology 91, 3749.CrossRefGoogle ScholarPubMed
Hamilton, P. B., Stevens, J. R., Gaunt, M. W., Gidley, J. and Gibson, W. C. (2004). Trypanosomes are monophyletic: evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA. International Journal for Parasitology 34, 13931404.Google Scholar
Hartigan, A., Phalen, D. N. and Šlapeta, J. (2010). Museum material reveals a frog parasite emergence after the invasion of the cane toad in Australia. Parasites & Vectors 3, 50.Google Scholar
Hemmerter, S., Šlapeta, J. and Beebe, N. W. (2009). Resolving genetic diversity in Australasian Culex mosquitoes: incongruence between the mitochondrial cytochrome c oxidase I and nuclear acetylcholine esterase 2. Molecular Phylogenetics and Evolution 50, 317325.Google Scholar
Liu, S. C., Gillespie, J., Atchison, N. and Andrew, P. (2014). The recovery programme for the Regent honeyeater Anthochaera phrygia: an example of conservation collaboration in Australia. International Zoo Yearbook 48, 8391.CrossRefGoogle Scholar
Lukeš, J. and Votýpka, J. (2000). Trypanosoma avium: novel features of the kinetoplast structure. Experimental Parasitology 96, 178181.Google Scholar
Mackerras, M. J. and Mackerras, I. M. (1960). The Haematozoa of Australian birds. Australian Journal of Zoology 8, 226260.Google Scholar
MacNally, R., Bowen, M., Howes, A., McAlpine, C. A. and Maron, M. (2012). Despotic, high-impact species and the subcontinental scale control of avian assemblage structure. Ecology 93, 668678.Google Scholar
McInnes, L. M., Gillett, A., Ryan, U. M., Austen, J., Campbell, R. S., Hanger, J. and Reid, S. A. (2009). Trypanosoma irwini n. sp (Sarcomastigophora: Trypanosomatidae) from the koala (Phascolarctos cinereus). Parasitology 136, 875885.Google Scholar
Molyneux, D. and Gordon, E. (1975). Studies on immunity with three species of avian trypanosomes. Parasitology 70, 181187.Google Scholar
Molyneux, D. H., Cooper, J. E. and Smith, W. J. (1983). Studies on the pathology of an avian trypanosome (T. bouffardi) infection in experimentally infected canaries. Parasitology 87(Pt 1), 4954.Google Scholar
Morin-Adeline, V., Vogelnest, L., Dhand, N. K., Shiels, M., Angus, W. and Šlapeta, J. (2011). Afternoon shedding of a new species of Isospora (Apicomplexa) in the endangered Regent Honeyeater (Xanthomyza phrygia). Parasitology 138, 713724.Google Scholar
O'Donoghue, P. J. and Adlard, R. D. (2000). Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45, 1163.Google Scholar
Podlipaev, A. A. (1990). Catalogue of world fauna of Trypanosomatidae (Protozoa). Proceedings of the Zoology Institute of the USSR Academy of Science, Leningrad 144, 1178.Google Scholar
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A. and Huelsenbeck, J. P. (2012). MrBayes 3·2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.Google Scholar
Russell, R. C. (2012). A review of the status and significance of the species within the Culex pipiens group in Australia. Journal of the American Mosquito Control Association 28, 2427.Google Scholar
Sehgal, R. N., Jones, H. I. and Smith, T. B. (2001). Host specificity and incidence of Trypanosoma in some African rainforest birds: a molecular approach. Molecular Ecology 10, 23192327.CrossRefGoogle ScholarPubMed
Sehgal, R. N., Valkiūnas, G., Iezhova, T. A. and Smith, T. B. (2006). Blood parasites of chickens in Uganda and Cameroon with molecular descriptions of Leucocytozoon schoutedeni and Trypanosoma gallinarum. The Journal of Parasitology 92, 13361343.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.Google Scholar
Thomas, R. (2009). Regent honeyeater habitat restoration project Lurg Hills, Victoria. Ecological Management & Restoration 19, 8497.Google Scholar
Valkiūnas, G. (2005). Avian Malaria Parasites and other Haemosporidia. CRC Press, Boca Raton, FL.Google Scholar
Valkiūnas, G., Iezhova, T. A., Carlson, J. S. and Sehgal, R. N. (2011). Two new Trypanosoma species from African birds, with notes on the taxonomy of avian trypanosomes. The Journal of Parasitology 97, 924930.Google Scholar
Votýpka, J. and Svobodová, M. (2004). Trypanosoma avium: experimental transmission from black flies to canaries. Parasitology Research 92, 147151.Google Scholar
Votýpka, J., Oborník, M., Volf, P., Svobodová, M. and Lukeš, J. (2002). Trypanosoma avium of raptors (Falconiformes): phylogeny and identification of vectors. Parasitology 125, 253263.Google Scholar
Votýpka, J., Szabová, J., Radrová, J., Zídková, L. and Svobodová, M. (2012). Trypanosoma culicavium sp. nov., an avian trypanosome transmitted by Culex mosquitoes. International Journal of Systematic and Evolutionary Microbiology 62, 745754.Google Scholar
Votýpka, J., d'Avila-Levy, C. M., Grellier, P., Maslov, D. A., Lukeš, J. and Yurchenko, V. (2015). New approaches to systematics of Trypanosomatidae: criteria for taxonomic (re)description. Trends in Parasitology 31, 460469.Google Scholar
Wallace, F. G., Camargo, E. P., McGhee, R. B. and Roitman, I. (1983). Guidelines for the description of new species of lower trypanosomatids. The Journal of Protozoology 30, 308313.Google Scholar
Wheeler, R. J., Gluenz, E. and Gull, K. (2013). The limits on trypanosomatid morphological diversity. PLoS One 8, e79581.Google Scholar
Yurchenko, V., Hobza, R., Benada, O. and Lukes, J. (1999). Trypanosoma avium: large minicircles in the kinetoplast DNA. Exp Parasitol 92, 215218.Google Scholar
Zídková, L., Cepicka, I., Szabová, J. and Svobodová, M. (2012). Biodiversity of avian trypanosomes. Infection, Genetics and Evolution 12, 102112.Google Scholar
Supplementary material: File

Šlapeta supplementary material

Šlapeta supplementary material 1

Download Šlapeta supplementary material(File)
File 21.3 KB
Supplementary material: File

Šlapeta supplementary material

Šlapeta supplementary material 2

Download Šlapeta supplementary material(File)
File 146.7 KB
Supplementary material: File

Šlapeta supplementary material

Figure S1

Download Šlapeta supplementary material(File)
File 64.6 KB
Supplementary material: File

Šlapeta supplementary material

Tables S1-S3

Download Šlapeta supplementary material(File)
File 39.5 KB