Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T03:24:23.926Z Has data issue: false hasContentIssue false

Inhibition of cytochrome P450-mediated metabolism enhances ex vivo susceptibility of Fasciola hepatica to triclabendazole

Published online by Cambridge University Press:  22 December 2009

C. DEVINE
Affiliation:
Parasite Therapeutics Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
G. P. BRENNAN
Affiliation:
Parasite Therapeutics Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
C. E. LANUSSE
Affiliation:
Laboratorio de Farmacología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Campus Universitario (UNCPBA), 7000 Tandil, Argentina
L. I. ALVAREZ
Affiliation:
Laboratorio de Farmacología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Campus Universitario (UNCPBA), 7000 Tandil, Argentina
A. TRUDGETT
Affiliation:
Parasite Therapeutics Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
E. HOEY
Affiliation:
Parasite Therapeutics Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
I. FAIRWEATHER*
Affiliation:
Parasite Therapeutics Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
*
*Corresponding author: School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland. Tel: +44 28 90972298. Fax: +44 28 90975877. E-mail: [email protected]

Summary

A study has been carried out to investigate whether the action of triclabendazole (TCBZ) against Fasciola hepatica is altered by inhibition of drug metabolism. The cytochrome P450 (CYP P450) system was inhibited using piperonyl butoxide (PB). The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible isolates were used for these experiments. The CYP P450 system was inhibited by a 2 h pre-incubation in PB (100 μm). Flukes were then incubated for a further 22 h in NCTC medium containing either PB; PB+nicotinamide adenine dinucleotide phosphate (NADPH) (1 nm); PB+NADPH+TCBZ (15 μg/ml); or PB+NADPH+TCBZ.SO (15 μg/ml). Morphological changes resulting from drug treatment and following metabolic inhibition were assessed using scanning electron microscopy. After treatment with either TCBZ or TCBZ.SO alone, there was greater disruption to the TCBZ-susceptible than the resistant isolate. However, co-incubation with PB and TCBZ/TCBZ.SO lead to more severe surface changes to the TCBZ-resistant Oberon isolate than with each drug on its own. With the TCBZ-susceptible Cullompton isolate, there was limited potentiation of drug action, and only with TCBZ.SO. The results support the concept of altered drug metabolism in TCBZ-resistant flukes and this process may play a role in the development of drug resistance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvarez, L. I., Solana, H. D., Mottier, M. L., Virkel, G. L., Fairweather, I. and Lanusse, C. E. (2005). Altered drug influx/efflux and enhanced metabolic activity in triclabendazole-resistant liver flukes. Parasitology 131, 501510.CrossRefGoogle ScholarPubMed
Alvinerie, M., Dupuy, J., Eeckhoutte, C., Sutra, J. F. and Kerboeuf, D. (2001). In vitro metabolism of moxidectin in Haemonchus contortus adult stages. Parasitology Research 87, 702704.CrossRefGoogle ScholarPubMed
Benchaoui, H. A. and McKellar, Q. A. (1996). Interaction between fenbendazole and piperonyl butoxide: pharmacokinetic and pharmacodynamic implications. Journal of Pharmacy and Pharmacology 48, 753759.CrossRefGoogle ScholarPubMed
Cvilink, V., Skálová, L., Szotáková, B., Lamka, J., Kostiainen, R. and Ketola, R. A. (2008). LC-MS-MS identification of albendazole and flubendazole metabolites formed ex vivo by Haemonchus contortus. Analytical and Bioanalytical Chemistry 391, 337343.CrossRefGoogle ScholarPubMed
Cvilink, V., Szotáková, B., Krížová, V., Lamka, J. and Skálová, L. (2009). Phase I biotransformation of albendazole in lancet fluke (Dicrocoelium dendriticum). Research in Veterinary Science 86, 4955.CrossRefGoogle ScholarPubMed
Devine, C., Brennan, G. P., Lanusse, C. E., Alvarez, L. I., Trudgett, A., Hoey, E. and Fairweather, I. (2009). Effect of the metabolic inhibitor, methimazole on the drug susceptibility of a triclabendazole-resistant isolate of Fasciola hepatica. Parasitology 136, 183192.CrossRefGoogle ScholarPubMed
Fairweather, I. (2005). Triclabendazole: new skills to unravel an old(ish) enigma. Journal of Helminthology 79, 227234.CrossRefGoogle ScholarPubMed
Fairweather, I. (2009). Triclabendazole progress report, 2005–2009: an advancement of learning? Journal of Helminthology 83, 139150.CrossRefGoogle ScholarPubMed
Fairweather, I., Threadgold, L. T. and Hanna, R. E. B. (1999). Development of Fasciola hepatica in the mammalian host. In Fasciolosis (ed. Dalton, J. P.), pp. 47–111. CAB International, Wallingford, Oxon, UK.Google Scholar
Gotoh, O. (1998). Divergent structures of Caenorhabditis elegans cytochrome P450 genes suggest the frequent loss and gain of introns during the evolution of nematodes. Molecular Biology and Evolution 15, 14471459.CrossRefGoogle ScholarPubMed
Gottschall, D. W., Theodorides, V. J. and Wang, R. (1990). The metabolism of benzimidazole anthelmintics. Parasitology Today 6, 115124.CrossRefGoogle Scholar
Halferty, L., Brennan, G. P., Trudgett, A., Hoey, L. and Fairweather, I. (2009). The relative activity of triclabendazole metabolites against the liver fluke, Fasciola hepatica. Veterinary Parasitology 159, 126138.CrossRefGoogle ScholarPubMed
Hodgson, E. and Levi, P. (1998). Interactions of piperonyl butoxide with cytochrome P450. In Piperonyl Butoxide: The Insecticide Synergist (ed. Jones, D. G.), pp. 4153. Academic Press, San Diego, CA, USA.Google Scholar
Jones, D. G. (1998). Piperonyl Butoxide: The Insecticide Synergist. Academic Press, San Diego, CA, USA.Google Scholar
Kerboeuf, D., Soubieux, D., Guilluy, R., Brazier, J. L. and Riviere, J. L. (1995). In vivo metabolism of aminopyrine by the larvae of the helminth Heligmosomoides polygyrus. Parasitology Research 81, 302304.CrossRefGoogle ScholarPubMed
Kotze, A. C. (1997). Cytochrome P450 monooxygenase activity in Haemonchus contortus (Nematoda). International Journal for Parasitology 27, 3340.CrossRefGoogle ScholarPubMed
Kotze, A. C. (1999). Peroxide-supported in-vitro cytochrome P450 activities in Haemonchus contortus. International Journal for Parasitology 29, 389396.CrossRefGoogle ScholarPubMed
Kotze, A. C. (2000). Oxidase activities in macrocyclic-resistant and -susceptible Haemonchus contortus. Journal of Parasitology 86, 873876.CrossRefGoogle ScholarPubMed
Kotze, A. C., Dobson, R. J. and Chandler, D. (2006). Synergism of rotenone by piperonyl butoxide in Haemonchus contortus and Trichostrongylus colubriformis in vitro: potential for drug-synergism through inhibition of nematode oxidative detoxification pathways. Veterinary Parasitology 136, 275282.CrossRefGoogle ScholarPubMed
McConville, M., Brennan, G. P., Flanagan, A., Hanna, R. E. B., Edgar, H. W. J., Castillo, R., Hernández-Campos, A. and Fairweather, I. (2009). Surface changes in adult Fasciola hepatica following treatment in vivo with the experimental fasciolicide, compound alpha. Parasitology Research 105, 757767.CrossRefGoogle ScholarPubMed
McKellar, Q. A., Gokbulut, C., Muzandu, K. and Benchaoui, H. (2002). Fenbendazole pharmacokinetics, metabolism, and potentiation in horses. Drug Metabolism and Disposition 30, 12301239.CrossRefGoogle ScholarPubMed
Mottier, L., Alvarez, L., Ceballos, L. and Lanusse, C. (2006 a). Drug transport mechanisms in helminth parasites: passive diffusion of benzimidazole anthelmintics. Experimental Parasitology 113, 4957.CrossRefGoogle ScholarPubMed
Mottier, L., Alvarez, L., Fairweather, I. and Lanusse, C. (2006 b). Resistance-induced changes in triclabendazole transport in Fasciola hepatica: ivermectin reversal effect. Journal of Parasitology 92, 13551360.CrossRefGoogle ScholarPubMed
Mottier, L., Virkel, G., Solana, H., Alvarez, L., Salles, J. and Lanusse, C. (2004). Triclabendazole biotransformation and comparative diffusion of the parent drug and its oxidized metabolites into Fasciola hepatica. Xenobiotica 34, 10431047.CrossRefGoogle ScholarPubMed
Robinson, M. W., Lawson, J., Trudgett, A., Hoey, E. M. and Fairweather, I. (2004). The comparative metabolism of triclabendazole sulphoxide by triclabendazole-susceptible and triclabendazole-resistant Fasciola hepatica. Parasitology Research 92, 205210.CrossRefGoogle ScholarPubMed
Saeed, H. M., Mostafa, M. H., O'Connor, P. J., Rafferty, J. A. and Doenhoff, M. J. (2002). Evidence for the presence of active cytochrome P450 systems in Schistosoma mansoni and Schistosoma haematobium adult worms. FEBS Letters 519, 205209.CrossRefGoogle ScholarPubMed
Sanchez, S., Small, J., Jones, D. G. and McKellar, Q. A. (2002). Plasma achiral and chiral pharmacokinetic behavior of intravenous oxfendazole co-administered with piperonyl butoxide in sheep. Journal of Veterinary Pharmacology and Therapeutics 25, 7–13.CrossRefGoogle ScholarPubMed
Sanchez-Bruni, S. F. S., Fusé, L. A., Moreno, L., Saumell, C. A., Álvarez, L. I., Fiel, C., McKellar, Q. A. and Lanusse, C. E. (2005). Changes to oxfendazole chiral kinetics and anthelmintic efficacy induced by piperonyl butoxide in horses. Equine Veterinary Journal 37, 257262.CrossRefGoogle ScholarPubMed
Solana, H. D., Rodriguez, J. A. and Lanusse, C. E. (2001). Comparative metabolism of albendazole and albendazole sulphoxide by different helminth parasites. Parasitology Research 87, 275280.CrossRefGoogle ScholarPubMed
Solana, H., Scarcella, S., Virkel, G., Ceriani, C., Rodríguez, J. and Lanusse, C. (2009). Albendazole enantiomeric metabolism and binding to cytosolic proteins in the liver fluke Fasciola hepatica. Veterinary Research Communications 33, 163173.CrossRefGoogle ScholarPubMed
Toner, E., McConvery, F., Brennan, G. P., Meaney, M. and Fairweather, I. (2009). A scanning electron microscope study on the route of entry of triclabendazole into the liver fluke, Fasciola hepatica. Parasitology 136, 523535.CrossRefGoogle Scholar
Velík, J., Baliharová, V., Fink-Gremmels, J., Bull, S., Lamka, J. and Skálová, L. (2004). Benzimidazole drugs and modulation of biotransformation enzymes. Research in Veterinary Science 76, 95–108.CrossRefGoogle ScholarPubMed
Virkel, G., Lifschitz, A., Sallovitz, J., Ballent, M., Scarcella, S. and Lanusse, C. (2009). Inhibition of cytochrome P450 activity enhances the systemic availability of triclabendazole metabolites in sheep. Journal of Veterinary Pharmacology and Therapeutics 32, 7986.CrossRefGoogle ScholarPubMed
Walker, S. M., McKinstry, B., Boray, J. C., Brennan, G. P., Trudgett, A., Hoey, E. M., Fletcher, H. and Fairweather, I. (2004). Response of two isolates of Fasciola hepatica to treatment with triclabendazole in vivo and in vitro. Parasitology Research 94, 427438.CrossRefGoogle ScholarPubMed