Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T05:45:42.882Z Has data issue: false hasContentIssue false

Ingestion of erythrocytic stroma by Plasmodium chabaudi trophozoites: ultrastructural study by serial sectioning and 3-dimensional reconstruction

Published online by Cambridge University Press:  06 April 2009

C. Slomianny
Affiliation:
I.N.S.E.R.M. U. 42, Domaine du C.E.R.T.I.A., 369 rue Jules Guesde 59650 Villeneuve d'Ascq, France
G. Prensier
Affiliation:
I.N.S.E.R.M. U. 42, Domaine du C.E.R.T.I.A., 369 rue Jules Guesde 59650 Villeneuve d'Ascq, France
P. Charet
Affiliation:
I.N.S.E.R.M. U. 42, Domaine du C.E.R.T.I.A., 369 rue Jules Guesde 59650 Villeneuve d'Ascq, France

Extract

An ultrastructural study of numerous serial sections of Plasmodium chabaudi trophozoites at various growth stages, followed by 3-dimensional reconstruction, allowed us to describe more precisely the internalization process of the erythrocytic stroma, both in space and in time. Two endocytotic processes are apparent. (1) Pinocytosis — as soon as the merozoite has become a young trophozoite (ring stage), small double membrane-bound vesicles can be seen budding off around the whole periphery of the parasite. After the inner membrane of the vesicle has disappeared, the contents alter and a pigment crystal appears. (2) Cytostomal system — this phenomenon coexists with, and eventually replaces, pinocytosis. It consists of invagination of the membrane of the parasitophorous vacuole and of the plasmalemma, through a typical cytostome, in order to form a cytostomal vacuole. This extends into a long tube, the cytostomal tube, which eventually digitates. When the tube reaches its maximal size, the cytostome disappears and the tube remains open to the erythrocytic stroma by a simple aperture. A new cytostome can form elsewhere on the parasite surface and another tube can extend. Two or three such tubes can coexist in a trophozoite although only one cytostome is functional at one time. At the end of the tubes vesicles bud off, the contents of which become modified as described previously. The residual product of haemoglobin degradation is the malarial pigment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M. (1971). Plasmodium: the fine structure of malarial parasites. Experimental Parasitology 30, 284320.CrossRefGoogle ScholarPubMed
Aikawa, M., Hiepler, P., Huff, C. G. & Sprinz, H. (1966 a). The feeding mechanism of avian malarial parasites. Journal of Cell Biology 28, 355–73.CrossRefGoogle ScholarPubMed
Aikawa, M., Huff, C. G. & Sprinz, H. (1966 b). Comparative feeding mechanism ofavian and primate malarial parasites. Military Medicine 131, 969–83.CrossRefGoogle ScholarPubMed
Aikawa, M., Huff, C. G. & Sprinz, H. (1967). Fine structure of the asexual stages of P. elongatum. Journal of Cell Biology 34, 229–49.CrossRefGoogle Scholar
Aikawa, M. & Seed, T. M. (1980). Morphology of Plasmodia. In Malaria (ed. Kreier, P.) pp. 285344. New York: Academic Press.Google Scholar
Aikawa, M. & Sterling, C. R. (1974). Intracellular Parasitic Protozoa. New York and London: Academic Press.Google Scholar
Cox, F. E. G. & Vickerman, K. (1966). Pinocytosis in P. vinckei. Annals of Tropical Medicine and Parasitology 60, 293–6.CrossRefGoogle Scholar
Deegan, T. & Maegraith, B. C. (1956 a). Studies of the nature of malarial pigment (haemozoin). I. The pigment of the simian species P. knowlesi and P. cynoniolgi. Annals of Tropical Medicine and Parasitology 50, 194211.CrossRefGoogle Scholar
Deegan, T. & Maegraith, B. C. (1956 b). Studies of the nature of malarial pigment (haemozoin). II. The pigment of the human species P. falciparum and P. malariae. Annals of Tropical Medicine and Parasitology 50, 212–22.CrossRefGoogle ScholarPubMed
Fletcher, K. A. & Maegraith, B. C. (1962). Intracellular phagotrophy by P. knowlesi. Annals of Tropical Medicine and Parasitology 56, 492–5.CrossRefGoogle Scholar
Fulton, J. D. & Flewett, T. H. (1956). The relation of P. berghei and P. knowlesi to their respective red cell hosts. Transactions of the Royal Society of Tropical Medicine and Hygiene 50, 150‐8.CrossRefGoogle Scholar
Howells, K. E., Peters, W. & Thomas, E. A. (1968). Host parasite relationships. Part. 4: The relationship between haernozoin formation and host cell age in chloroquine and primaquine resistant strains of P. berghei. Annals of Tropical Medicine and Parasitology 62, 271–6.CrossRefGoogle Scholar
Killby, V. A. A. & Silverman, P. H. (1969). Fine structural observations of the erythrocytic stages of P. chabaudi (Landau, 1965). Journal of Protozoology 16, 354–70.CrossRefGoogle Scholar
Ladda, R. L. (1969). New insights into the fine structure of rodent malarial parasites. Military Medicine 134, 825–65.CrossRefGoogle ScholarPubMed
Langreth, S. G. (1976). Feeding mechanism in extracellular Babesia microti and P. lophurae. Journal of Protozoology 23, 215–33.CrossRefGoogle Scholar
Rudzinska, M. A. & Trager, W. (1957). Intracellular phagotrophy by malarial parasites: an electron microscopy study of P. lophurae. Journal of Protozoology 4, 190–9.CrossRefGoogle Scholar
Rudzinska, M. A. & Trager, W. (1959). Phagotrophy and two new structures in the malaria parasite P. berghei. Journal of Biophysical and Biochemical Cytology 6, 103–12.CrossRefGoogle Scholar
Rudzinska, M. A. & Trager, W. (1968). The fine structure of trophozoites and gametocytes in P. coatneyi. Journal of Protozoology 15, 7388.CrossRefGoogle Scholar
Rudzinska, M. A., Trager, W. & Bray, P. (1965). Pinocytic uptake and the digestion of haemoglohin in malaria parasites. Journal of Protozoology 12, 563–76.CrossRefGoogle Scholar
Scalzi, H. A. & Bahr, G. F. (1968). An electron microscopic examination of erythrocytic stages of two rodent malarial parasites, P. chabaudi and P. vinckei. Journal of Ultrastructural Research 24, 116–33.CrossRefGoogle Scholar
Seed, M., Sterling, C. R., Aikawa, M. & Rabbege, J. (1976). P. simium: ultrastructure of erythrocytic phase. Experimental Parasitology 39, 262–76.CrossRefGoogle ScholarPubMed
Sherman, I. W. & Hull, R. W. (1960). The pigment (haemozoin) anti proteins of the avian malaria parasite P. lophurae. Journal of Protozoology 7, 409–16.CrossRefGoogle Scholar
Sinden, R. E. (1978). Cell Biology. In Rodent Malaria (ed. Killick-Kendrick, R. and Peters, W.), pp. 85168. London: Academic Press.Google Scholar
Sinden, R. E. & Garnham, P. C. C. (1973). A comparative study on the ultrastructure of Plasnlodium sporozoites within the oocyst and salivary glands, with particular reference to the incidence of the micropore. Transactions of the Royal Society of Tropical Medicine and Hygiene 67, 631–7.CrossRefGoogle Scholar
Slomianny, C., Charet, P. & Prensier, G. (1983). Ultrastructural localization of enzymes involved in the feeding process in P. chabaudi and Babesia hyloniysci. Journal of Protozoology 30, 376–82.CrossRefGoogle Scholar
Thearston, R. D. G., Fletcher, K. A. & Maegraith, B. G. (1968). The fine structure of P. vinckei, malaria parasite of rodents. Annals of Tropical Medicine and Parasitology 62, 122–34.CrossRefGoogle Scholar
Trager, W., Rudzinska, M. A. & Bradbury, P. (1966). The fine structure of P.falciparum and its host erythrocytes in malarial infection in man. Bulletin of the World Health Organization 35, 883–5.Google Scholar
Vviver, E., Sshrevel, J. & Hennéré, E. (1964). L'ultrastructure de Ia paroi de quelques Sporozoaires, ses rapports avec certains organites cytoplasmiques, son roˇle possible dans Ia nutrition. Proceedings of the 1st International Congress of Parasitology, Rome 1, 290–1.Google Scholar
Wunderlick, F., Srubig, H. & Konigk, E. (1980 a). Nuclear envelope – plasma membrane compaction domain in malaria parasites. Cellular Biology International Reports 4, 519–24.CrossRefGoogle Scholar
Wunderlich, F., Stubig, H. & Konigk, E. (1980 b). Development of P. chabaudi in mouse red blood cells: structural properties of the host and parasite membrane. Journal of Protozoology 29, 60–6.CrossRefGoogle Scholar