Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T19:43:57.278Z Has data issue: false hasContentIssue false

The influence of Hymenolepis diminuta on the survival and fecundity of the intermediate host, Tribolium confusum

Published online by Cambridge University Press:  06 April 2009

Anne E. Keymer
Affiliation:
Department of Zoology, Imperial College, Prince Consort Road, London SW7 2BB

Summary

An experimental study of the effects of parasitism by H. diminuta on the intermediate host, Tribolium confusum, is described. No density- dependent constraints on parasite establishment within individual hosts are evident, although a reduction in cysticercoid size at high parasite burdens is demonstrated. The relationship between parasite burden, host mortality and host fecundity is investigated. Host mortality is linearly related to parasite burden, whereas the relationship between parasite burden and host fecundity is non-linear. There is no difference in viability between eggs from infected and uninfected females. The generative causes of these effects are not investigated experimentally, although it is postulated that survival is related to the degree of damage to the midgut wall caused by parasite penetration, and fecundity to the biomass of parasites harboured by the host. The significance of these effects is discussed in relation to the overall dynamics of the host-parasite association.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. (1978). The regulation of host population growth by parasitic species. Parasitology 76, 119–57.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1978). Regulation and stability of host–parasite population interactions. 1. Regulatory processes. Journal of Animal Ecology 47, 219–47.CrossRefGoogle Scholar
Anderson, R. M. & Whitfield, P. J. (1975). Survival characteristics of the free-living cercarial population of the ectoparasitic digenean Transversotrema patialense (Soparker 1924). Parasitology 70, 295310.CrossRefGoogle Scholar
Andreasson, J., Hindsbo, O. & Hesselberg, C. A. (1974). Immunity to Hymenolepis diminuta in rats: destrobilation and expulsion in primary infections, its suppression by cortisone treatment and increased resistance to secondary infections. Proceedings of the Third International Congress of Parasitology, Munich, 1056–7.Google Scholar
Befus, A. D. & Threadgold, L. T. (1975). Possible immunological damage to the tegument of Hymenolepis diminuta in mice and rats. Parasitology 71, 525–34.CrossRefGoogle Scholar
Bliss, C. I. & Fisher, R. A. (1953). Fitting the negative binomial distribution to biological data and a note on the efficient fitting of the negative binomial. Biometrics 9, 176200.CrossRefGoogle Scholar
Crofton, H. D. (1971). A quantitative approach to parasitism. Parasitology 62, 179–94.CrossRefGoogle Scholar
Dunkley, L. C. & Mettrick, D. F. (1971). Hymenolepis diminuta: effect of quality of host dietary carbohydrate on growth. Experimental Parasitology 25, 146–61.CrossRefGoogle Scholar
Frye, R. D. & Olson, L. C. (1974). Fecundity and survival in populations of the European Corn Borer infected with Perezia pyraustae. Journal of Invertebrate Pathology 24, 378–9.CrossRefGoogle Scholar
Harris, W. G. & Turton, J. A. (1973). Antibody response to the tapeworm (Hymenolepis diminuta) in the rat. Nature, London 246, 521–2.CrossRefGoogle Scholar
Heyneman, D. & Voge, M. (1971). Host response of the flour beetle, Tribolium confusum, to infections with Hymenolepis diminuta, H. microstoma and H. citelli (Cestoda: Hymenolepididae). Journal of Parasitology 57, 881–6.CrossRefGoogle Scholar
Howe, R. W. (1962). The effects of temperature and humidity on the oviposition rate of Tribolium castaneum (Herbst) (Coleoptera, Tenebrionidae). Bulletin Entomological Research 53, 301–10.CrossRefGoogle Scholar
Insler, G. D. & Roberts, L. S. (1976). Hymenolepis diminuta: lack of pathogenicity in the healthy rat host. Experimental Parasitology 39, 351–7.CrossRefGoogle ScholarPubMed
Keymer, A. E. & Anderson, R. M. (1979). The dynamics of infection of Tribolium confusum by Hymenolepis diminuta: the influence of infective stage density and spatial distribution. Parasitology 79, 195207.CrossRefGoogle ScholarPubMed
Lackie, A. M. (1976). Evasion of the haemocytic defence reaction of certain insects by larvae of Hymenolepis diminuta (Cestoda). Parasitology 73, 97107.CrossRefGoogle ScholarPubMed
Lanciani, C. A. (1975). Parasite induced alterations in host reproduction and survival. Ecology 56, 689–95.CrossRefGoogle Scholar
May, R. M. & Anderson, R. M. (1978). Regulation and stability of host–parasite population interactions. II. Destabilizing processes. Journal of Animal Ecology 47, 249–67.CrossRefGoogle Scholar
Milner, R. J. (1972). Nosema whitei, a microsporidian pathogen of some species of Tribolium. III. Effect on T. castaneum. Journal of Invertebrate Pathology 19, 248–55.CrossRefGoogle Scholar
Nappi, A. J. (1975). Parasite encapsulation in insects. In Invertebrate Immunity (ed. Maramorosch, K. and Shope, R. E.). New York: Academic Press.Google Scholar
Pielou, E. C. (1977). Mathematical Ecology, John Wiley and Sons.Google Scholar
Prescott, D. M. & Voge, M. (1959). Autoradiographic study of the synthesis of ribonucleic acid in cysticercoids of H. diminuta. Journal of Parasitology 45, 587–90.CrossRefGoogle Scholar
Rau, M. E. (1979). The frequency distribution of Hymenolepis diminuta cysticercoids in natural, sympatric populations of Tenebrio molitor and T. obscurus. International Journal for Parasitology 9, 85–7.CrossRefGoogle Scholar
Rich, E. R. (1956). Egg cannibalism and fecundity in Tribolium. Ecology 37, 109–20.CrossRefGoogle Scholar
Schiller, E. L. (1959). Experimental studies on morphological variation in the cestode genus Hymenolepis 1. Morphology and development of the cysticercoid of H. nana in Tribolium confusum. Experimental Parasitology 8, 91118.CrossRefGoogle Scholar
Sheppe, W. A. & Adams, J. R. (1957). The pathogenic effect of Trypanosoma duttoni in hosts under stress conditions. Journal of Parasitology 57, 55–9.CrossRefGoogle Scholar
Soltice, G. E., Arai, H. P. & Scheinberg, E. (1971). Host–parasite interactions of Tribolium confusum and Tribolium castaneum with Hymenolepis diminuta. Canadian Journal of Zoology 49, 265–73.CrossRefGoogle ScholarPubMed
Ubelaker, J. E., Cooper, N. B. & Allison, V. F. (1970). Possible defensive mechanism of Hymenolepis diminuta cysticercoids to hemocytes of the beetle, Tribolium confusum. Journal of Invertebrate Pathology 16, 310–12.CrossRefGoogle ScholarPubMed
Voge, M. (1959). Temperature stress and development of Hymenolepis diminuta in Tribolium confusum on different diets. Journal of Parasitology 45, 591–6.CrossRefGoogle Scholar
Voge, M. (1975). Axenic development of cysticercoids of Hymenolepis diminuta (Cestoda). Journal of Parasitology 63, 563–4.CrossRefGoogle Scholar
Voge, M. & Berntzen, A. K. (1961). In vitro hatching of oncospheres of Hymenolepis diminuta (Cestoda: Cyclophyllidea). Journal of Parasitology 47, 813–18.CrossRefGoogle ScholarPubMed
Voge, M. & Heyneman, D. (1957). Development of Hymenolepis nana and Hymenolepis diminuta (Cestoda: Hymenolepididae) in the intermediate host, Tribolium confusum. University of California Publications in Zoology 59, 549–80.Google Scholar
Weatherly, N. F. (1971). Effects on litter size and litter survival in swiss mice infected with Trichinella spiralis during gestation. Journal of Parasitology 57, 298301.CrossRefGoogle ScholarPubMed