Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-03T00:40:18.688Z Has data issue: false hasContentIssue false

The influence of host blood on infection rates in Glossina morsitans sspp. infected with Trypanosoma congolense, T. brucei and T. simiae

Published online by Cambridge University Press:  06 April 2009

S. Mihok
Affiliation:
Tsetse Research Programme, International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
R. O. Olubayo
Affiliation:
Kenya Agricultural Research Institute, National Veterinary Research Centre, P.O. Kabete, Nairobi, Kenya
N. Darji
Affiliation:
Tsetse Research Programme, International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
E. Zweygarth
Affiliation:
Kenya Trypanosomiasis Research Institute, Kikuyu, Kenya

Summary

Trypanosoma congolense, T. brucei and T. simiae isolated from wild-caught Glossina pallidipes were fed to laboratory-reared G. morsitans centralis and G. m. morsitans to determine the effect of host blood at the time of the infective feed on infection rates. Bloodstream forms of trypanosomes were membrane-fed to flies either neat, or mixed with blood from cows, goats, pigs, buffalo, eland, waterbuck and oryx. The use of different bloods for the infective feed resulted in differences in infection rates that were repeatable for both tsetse subspecies and most parasite stocks. Goat, and to a lesser extent, pig blood facilitated infection, producing high infection rates at low parasitaemias. Blood from cows and the wildlife species produced low infection rates, with eland blood producing the lowest. Addition of D(+)-glucosamine (an inhibitor of tsetse midgut lectin) increased infection rates in most cases. These results indicate the presence of species-specific factors in blood that affect trypanosome survival in tsetse. In certain hosts, factors actually appear to promote infection. The nature of these factors and how they might interact with midgut lectins and proteases are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dipeolu, O. O. (1975). Studies on the development of Trypanosoma congolense in tsetse flies (Glossina: Diptera) and the factors affecting it. Acta Protozoologica 14, 241–51.Google Scholar
Gingrich, J. B., Macken, L. M., Jackson, P. R. & Roberts, D. R. (1985). Trypanosoma brucei rhodesiense: enhancement of infection rates in the tsetse fly, Glossina morsitans, by feeding artificial bloodmeal mixtures. American Journal of Tropical Medicine and Hygiene 34, 73–7.CrossRefGoogle ScholarPubMed
Gooding, R. H. (1974). Digestive processes of haematophagous insects V. Inhibitors of trypsin from Glossina morsitans morsitans (Diptera: Glossinidae). Canadian Entomologist 106, 3944.CrossRefGoogle Scholar
Grab, D. J. & Bwayo, J. J. (1982). Isopycnic isolation of African trypanosomes on Percoll gradients formed in situ. Acta Tropica 39, 363–6.Google ScholarPubMed
Ham, P. J., Phiri, J. S. & Nolan, G. P. (1991). Effect of Nacetyl-D-glucosamine on the migration of Brugia pahangi microfilariae into the haemocoel of Aedes aegypti. Medical and Veterinary Entomology 5, 485–93.CrossRefGoogle ScholarPubMed
Ibrahim, E. A. R., Ingram, G. A. & Molyneux, D. H. (1984). Haemagglutinins and parasite agglutinins in haemolymph and gut of Glossina. Tropenmedizin und Parasitologie 35, 151–6.Google ScholarPubMed
Imbuga, M. O., Osir, E. O., Labongo, V. L., Darji, N. & Otieno, L. H. (1992). Studies on tsetse midgut factors that induce differentiation of bloodstream Trypanosoma brucei brucei in vitro. Parasitology Research 78, 1015.CrossRefGoogle ScholarPubMed
Ingram, G. A. & Molyneux, D. H. (1990). Lectins (haemagglutinins) in the haemolymph of Glossina fuscipes fuscipes: isolation, partial characterization, selected physico-chemical properties and carbohydrate-binding specificities. Insect Biochemistry 20, 1327.CrossRefGoogle Scholar
Kabayo, J. P., Deloach, J. R., Spates, G. E., Holman, G. M. & Kapatsa, G. M. (1986). Studies on the biochemical basis of the nutritional quality of tsetse fly diets. Comparative Biochemistry and Physiology 83A, 133–9.CrossRefGoogle ScholarPubMed
Langley, P. A., Ogwal, L. M., Felton, T. & Stafford, K. (1987). Lipid digestion in the tsetse fly, Glossina morsitans. Journal of Insect Physiology 33, 981–6.CrossRefGoogle Scholar
Lanham, S. M. & Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology 28, 521–34.CrossRefGoogle ScholarPubMed
Lehane, M. J. & Msangi, A. R. (1991). Lectin and peritrophic membrane development in the gut of Glossina m. morsitans and a discussion of their role in protecting the fly against trypanosome infection. Medical and Veterinary Entomology 5, 495501.CrossRefGoogle Scholar
Maudlin, I. (1991). Transmission of African trypanosomiasis: interactions among tsetse immune system, symbionts, and parasites. Advances in Disease Vector Research 7, 117–48.CrossRefGoogle Scholar
Maudlin, I., Dukes, P., Luckins, A. G. & Hudson, K. M. (1986). Extrachromosomal inheritance of susceptibility to trypanosome infection in tsetse flies. II. Susceptibility of selected lines of Glossina morsitans morsitans to different stocks and species of trypanosome. Annals of Tropical Medicine and Parasitology 80, 97105.CrossRefGoogle ScholarPubMed
Maudlin, I., Kabayo, J. P., Flood, M. E. T. & Evans, D. A. (1984). Serum factors and the maturation of Trypanosoma congolense infections in Glossina morsitans. Zeitschrift für Parasitenkunde 70, 1119.CrossRefGoogle ScholarPubMed
Maudlin, I. & Welburn, S. C. (1987). Lectin mediated establishment of midgut infections of Trypanosoma congolense and Trypanosoma brucei in Glossina morsitans. Tropical Medicine and Parasitology 38, 167–70.Google ScholarPubMed
Maudlin, I. & Welburn, S. C. (1988). The role of lectins and trypanosome genotype in the maturation of midgut infections in Glossina morsitans. Tropical Medicine and Parasitology 39, 56–8.Google ScholarPubMed
Maudlin, I., Welburn, S. C. & Milligan, P. (1991). Salivary gland infection: a sex-linked recessive character in tsetse. Acta Tropica 48, 915.CrossRefGoogle Scholar
Mihok, S., Munyoki, E., Brett, R. A., Jonyo, J. F., Röttcher, D., Majiwa, P. A. O., Kang'ethe, E. K., Kaburia, H. F. A. & Zweygarth, E. (1992 a). Trypanosomiasis and the conservation of black rhinoceros (Diceros bicornis) at the Ngulia Rhino Sanctuary, Tsavo West National Park, Kenya. African Journal of Ecology 30, 103–15.CrossRefGoogle Scholar
Mihok, S., Olubayo, R. O. & Wesonga, D. F. (1991). Infection rates in Glossina morsitans morsitans fed on waterbuck (Kobus defassa) and Boran cattle (Bos indicus) infected with Trypanosoma congolense. Acta Tropica 45, 185–91.CrossRefGoogle Scholar
Mihok, S., Otieno, L. H., Darji, N. & Munyinyi, D. (1992 b). Influence of D(+)-glucosamine on infection rates and parasite loads in Trypanosoma brucei infected tsetse flies (Glossina spp.). Acta Tropica 51, 217–28.CrossRefGoogle ScholarPubMed
Moloo, S. K. (1981). Effects of maintaining Glossina morsitans morsitans on different hosts upon the vector's subsequent infection rates with pathogenic trypanosomes. Acta Tropica 38, 125–36.Google ScholarPubMed
Moloo, S. K. (1984). Trypanosoma vivax, T. congolense or T. brucei infection rates in Glossina morsitans when maintained in vitro on the blood of goat or calf. Acta Tropica 41, 45–9.Google ScholarPubMed
Moloo, S. K., Kutuza, S. B. & Desai, J. (1988). Infection rates in sterile males of morsitans, palpalis and fusca groups Glossina for pathogenic Trypanosoma species from East and West Africa. Acta Tropica. 45, 145–52.Google ScholarPubMed
Molyneux, D. H. & Stiles, J. K. (1991). Trypanosomatid – vector interactions. Annales de Société de la Belge Médicine Tropicaux 71 (Suppl. 1), 151–66.Google ScholarPubMed
Mulla, A. F. & Rickman, L. R. (1988). Evidence for the presence of an innate trypanosomicidal factor in the serum of a non-immune African waterbuck (Kobus ellipsiprymnus). Transactions of the Royal Society of Tropical Medicine and Hygiene 82, 97–8.CrossRefGoogle ScholarPubMed
Olubayo, R. O., Mihok, S., Wesonga, D. F. & Mbwabi, E. R. M. (1991). Pathogenicity of tsetse-transmitted Trypanosoma congolense for waterbuck (Kobus defassa) and Boran cattle (Bos indicus). Acta Tropica 49, 173–83.CrossRefGoogle ScholarPubMed
Reduth, D., Olubayo, R. O., Grootenhuis, J. G., Brun, R. & Black, S. J. (1991). Identification of a trypanotoxin in African buffalo and eland serum. In Expression of Trypanotolerance by African Wild Bovidae with Special Reference to the Buffalo (Syncerus caffer), pp. 113139. Ph.D. thesis, (Olubayo, R. O.) University of Utrecht, Netherlands.Google Scholar
Rickman, L. & Kolala, F. (1982). Effects of some African game animal sera on Trypanosoma brucei rhodesiense and T. b. brucei clones. Tropenmedizin und Parasitologie 33, 129–35.Google ScholarPubMed
Shaw, M. K. & Moloo, S. K. (1991). Comparative study on Rickettsia-like organisms in the midgut epithelial cells of different Glossina species. Parasitology 102, 193–9.CrossRefGoogle ScholarPubMed
Stiles, J. K., Ingram, G. A., Wallbanks, K. R., Molyneux, D. H., Maudlin, I. & Welburn, S. (1990). Identification of midgut trypanolysin and trypanoagglutinin in Glossina palpalis sspp. (Diptera: Glossinidae). Parasitology 101, 369–76.CrossRefGoogle ScholarPubMed
Stiles, J. K., Wallbanks, K. R. & Molyneux, D. H. (1991). The use of casein substrate gels for determining trypsin-like activity in the midgut of Glossina palpalis spp (Diptera: Glossinidae). Journal of Insect Physiology 37, 247–54.CrossRefGoogle Scholar
Turner, C. M. R., Barry, J. D. & Vickerman, K. (1988). Loss of variable antigen during transformation of Trypanosoma brucei rhodesiense from bloodstream to procyclic forms in the tsetse fly. Parasitology Research 74, 507–11.CrossRefGoogle ScholarPubMed
Welburn, S. C., Maudlin, I. & Ellis, D. S. (1989). Rate of trypanosome killing by lectins in midguts of different species and strains of Glossina. Medical and Veterinary Entomology 3, 7782.CrossRefGoogle ScholarPubMed