Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T19:27:42.960Z Has data issue: false hasContentIssue false

Influence of environmental factors on the infectivity of Echinococcus multilocularis eggs

Published online by Cambridge University Press:  06 April 2009

P. Veit
Affiliation:
University of Hohenheim, Division of Parasitology (Department of Zoology), Emil-Wolff-Strasse 34, 70599 Stuttgart, Germany
B. Bilger
Affiliation:
University of Hohenheim, Division of Parasitology (Department of Zoology), Emil-Wolff-Strasse 34, 70599 Stuttgart, Germany
V. Schad
Affiliation:
University of Hohenheim, Division of Parasitology (Department of Zoology), Emil-Wolff-Strasse 34, 70599 Stuttgart, Germany
J. Schäfer
Affiliation:
University of Hohenheim, Division of Parasitology (Department of Zoology), Emil-Wolff-Strasse 34, 70599 Stuttgart, Germany
W. Frank
Affiliation:
University of Hohenheim, Division of Parasitology (Department of Zoology), Emil-Wolff-Strasse 34, 70599 Stuttgart, Germany
R. Lucius
Affiliation:
University of Hohenheim, Division of Parasitology (Department of Zoology), Emil-Wolff-Strasse 34, 70599 Stuttgart, Germany

Extract

The sensitivity of eggs of Echinococcus multilocularis to environmental and controlled laboratory conditions was tested. Egg material was exposed and the infectivity was subsequently monitored by in vitro activation and by oral infection of the natural host, Microtus arvalis. To study the impact of environmental conditions in an endemic area of south-western Germany, eggs were sealed into bags of nylon mesh and exposed to the natural climate during various seasons. The maximal survival time of eggs was 240 days in an experiment performed in autumn and winter and 78 days in summer. A study of the tenacity of eggs under laboratory conditions revealed a high sensitivity to elevated temperatures and to desiccation. At 45 °C and 85–95% relative humidity the infectivity was lost after 3 h as well as after 4 h exposure to 43 °C suspended in water. Exposure to 27% relative humidity at 25 °C as well as exposure to 15% relative humidity at 43 °C resulted in a total loss of infectivity within 48 and 2 h, respectively. Temperatures of 4 °C and of –18 °C were well tolerated (478 days and 240 days survival, respectively), whereas exposure to –83 °C and to –196 °C quickly killed off the eggs (within 48 h and 20 h, respectively). Eggs of E. multilocularis were not killed off by exposure to various commercially available disinfectants applied according to the manufacturers' instructions and by exposure for 24 h to low concentrations of ethanol. Irradiation with 40 krad. from a 137Caesium source prevented the development of metacestodes but allowed seroconversion of infected rodents.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bähr, R. (1982). Aktuelle Probleme der Echinokokkose unter Berü;cksichtigung parasitologischer und klinischer Aspekte. Aktuelle Probleme in Chirurgie und Orthopädie 23, 9.Google Scholar
Ballek, D. (1991). Occurrence of Echinococcus multilocularis and other nematodes and cestodes in the red fox, Vulpes vulpes, in the districts of Arnsberg, Detmold and Kassel. Dissertation, Tierärztliche Hochschule Hannover.Google Scholar
Bilger, B., Veit, P., Schelling, U., Frank, W., Kimmig, P. & Lucius, R. (1992). Studien zur Verbreitung und Bekampfung des Fuchsbandwurmes Echinococcus multilocularis. Actuelle Zoonosen, Bericht des 4. Hohenheimer Seminars, 16–17 September 1992, Deutsche Veterinärmedizinische Gesellschaft.Google Scholar
Blunt, D. S., Gubrud, D. A. & Hildreth, M. (1991). Lethal effects of freezing Echinococcus multilocularis eggs at low temperature. Proceedings of the 66th Meeting of the American Society for Parasitology, Madison, 08 4–8, Abstract No. 205.Google Scholar
Brochier, B., Cappeus, P., Larson, B., Aubert, M. F. A., Bauduin, B., Barrat, M. J., Cesty, T., Peharpre, D., Pouplard, C. & Pastoret, P. P. (1992). Prevalence of Echinococcus multilocularis infection in the red fox (Vulpes vulpes) in the province of Luxemburg (Belgium). Annales de Médicine Vétérinaire 136, 497501.Google Scholar
Colli, C. W. & Williams, J. F. (1972). Influence of temperature on the infectivity of eggs of Echinococcus granulosus in laboratory rodents. Journal of Parasitology 58, 422–6.CrossRefGoogle ScholarPubMed
Deplazes, P. & Eckert, J. (1988). Massengewinnung und Lagerung von Taenia hydatigena-Eiern sowie Isolierung lebensfähiger Onkosphären. Schweizerisches Archiv für Tierheilkunde 130, 307–20.Google Scholar
Dow, C., Jarrett, W. F. H., Jennings, F. W., McIntyre, K. I. M. & Mulligan, W. (1962). The production of immunity to Cysticerus fasciolaris using X-irradiated oncospheres. American Journal of Veterinary Research 23, 146–9.Google Scholar
Eckert, J. & Ammann, R. (1990). Informationen zum sogenannten Fuchsbandwurm. Schweizerisches Archiv für Tierheilkunde 133, 92–8.Google Scholar
Eckert, J., Ewald, D., Siegenthaler, M., Brossard, M., Zanoni, R. G. & Kappeler, A. (1993). Der ‘ Kleine Fuchsbandwurm’ (Echinococcus multilocularis) in der Schweiz: Epidemiologische Situation bei Füchsen und Bedeutung für den Menschen. Bulletin des Bundesamtes für Gesundheitswesen 25, 468–76.Google Scholar
Ewald, D. (1990). Die Verbreitung des Fuchsbandwurmes (Echinococcus multilocularis) bei Fuchs (Vulpes vulpes) und Bisam (Ondatra zibethicus) im Regierungsbezirk Freiburg. Mitteilungen des badischen Landesvereins für Naturkunde und Naturschutz 15, 8199.Google Scholar
Frank, W. (1984). Echinococcus multilocularis – ein endemischer Bandwurm des Rotfuchses in Süddeutschland. Biologic, Epidemiologie und humanmedizinische Bedeutung. Wiener Tierärztliche Monatsschrift 71, 1922.Google Scholar
Frank, W., Schäfer, J., Pfister, T. & Schad, V. (1989). Potential ways of decontamination of food from Echinococcus multilocularis eggs and sensitivity of these eggs against physical and chemical methods of disinfection. WHO Informal Consultation on Alveolar Echinococcosis, Hohenheim, Germany, 14–16 08 1989.Google Scholar
Gemmell, M. A. (1964). Immunological responses of the mammalian host against tapeworm infections. I. Species specificity of hexacanth embryos in protecting sheep against Taenia hydatigena. Immunology 7, 489–99.Google ScholarPubMed
Gemmell, M. A. (1969). Immunological responses of the mammalian host against tapeworm infections. X. Immunization of sheep against Taenia hydatigena and T. ovis with chemically or physically treated embryos. Experimental Parasitology 26, 5866.CrossRefGoogle ScholarPubMed
Gemmell, M. A. (1978). The effect of weather on tapeworm eggs and its epidemiological implications. Weather and Parasitic Animal Disease; World Meteorological Organization Technical Note 159, 8394.Google Scholar
Gönnert, R. & Thomas, H. (1969). Einfluβ Von Verdauungssäften auf die Eihüllen von Taenia-Eiern. Zeitschrift für Parasitenkunde 32, 237–53.Google Scholar
Ilsoe, B., Kyvsgaard, N., Nansen, P. & Henriksen, S. A. (1990). A study on the survival of Taenia saginata eggs on soil in Denmark. Acta Veterinaria Scandinavica 31, 513–18.CrossRefGoogle Scholar
Jonas, D. & Hahn, W. (1984). Detection of Echinococcus multilocularis in foxes in Rheinland-Pfalz. Der Praktische Tierarzt 65, 67–9.Google Scholar
Laws, G. F. (1967). Chemical ovacidal measures as applied to Taenia hydatigena, Taenia ovis, Taenia pisiforntis, and Echinococcus granulosus. Experimental Parasitology 20, 2737.CrossRefGoogle ScholarPubMed
Laws, G. F. (1968). Physical factors influencing survival of taeniid eggs. Experimental Parasitology 22, 227–39.CrossRefGoogle ScholarPubMed
Lawson, J. R. & Gemmell, M. A. (1983). Hydatidosis and cysticercosis: the dynamics of transmission. Advances in Parasitology 22, 261308.CrossRefGoogle ScholarPubMed
Mackie, A. & Parnell, I. W. (1967). Some observations on taeniid ovicides: The effects of some organic compounds and pesticides on activity and hatching. Journal of Helminthology 41, 167210.CrossRefGoogle Scholar
Pesson, B. & Carbiener, R. (1989). Ecology of multilocular hydatidosis in Alsace. Parasitism in the red fox (Vulpes vulpes). Bulletin d'Écologie 20, 295301.Google Scholar
Petavy, A. F., Deblock, S. & Walbaum, S. (1991). Life cycles of Echinococcus multilocularis in relation to human infection. Journal of Parasitology 77, 133–7.CrossRefGoogle ScholarPubMed
Prosl, H., Schnabl, H. & Damoser, J. (1994). Zur Verbreitung von Echinococcus multilocularis in Österreich. Tropical Medicine and Parasitology (in the Press.)Google Scholar
Schelling, U., Schäfer, E., Pfister, T. & Frank, W. (1991). Zur Epidemiologie des Echinococcus multilocularis im nordöstlichen Baden-Württemberg. Tierärztliche Umschau 46, 673–6.Google Scholar
Schiller, E. L. (1955). Studies on the helminth fauna of Alaska. XXVI. Some observations on the cold-resistance of eggs of Echinococcus sibiricensis Rausch and Schiller, 1954. Journal of Parasitology 41, 578–82.CrossRefGoogle ScholarPubMed
Schott, E. & Müller, B. (1989). Prevalence of Echinococcus multilocularis in red foxes in the district of Tübingen (Germany). Tierärztliche Umschau 44, 367–70.Google Scholar
Silverman, P. H. (1954). Studies on the biology of some tapeworms of the genus Taenia. I. Factors affecting hatching and activation of taeniid ova, and some criteria of their viability. Annals of Tropical Medicine and Parasitology 48, 207–15.CrossRefGoogle Scholar
Suhrke, J., Plötner, J. & Zemke, M. (1991). Zum Vorkommen von Echinococcus multilocularis bei Tieren im Südthüringer Raum. Monatshefte der Veterinärmedizin 46, 714–17.Google Scholar
Tackmann, K. & Beier, D. (1993). Epidemiologische Untersuchungen zu Echinococcus multilocularis (Leuckart 1863) im Land Brandenburg. Tierärztliche Umschau 48, 498503.Google Scholar
Thomas, L. J. & Babero, B. B. (1956). Observations on the infectivity of Echinococcus eggs obtained from foxes (Alopex lagopus Linn.) on St. Lawrence Island, Alaska. Journal of Parasitology 42, 659.CrossRefGoogle Scholar
Wachira, T. M., Macpherson, C. N. L. & Gathuma, J. M. (1991). Release and survival of Echinococcus multilocularis eggs in different environments in Turkana, and their possible impact on the incidence of hydatidosis in man and livestock. Journal of Helminthology 65, 5561.CrossRefGoogle Scholar
Williams, R. J. (1963). Determination of the value of formalin and boiling water as taeniid ovicides. Journal of Veterinary Research 4, 550–4.Google Scholar
Williams, J. F. & Colli, C. W. (1972). Influence of ionizing irradiation on infectivity of eggs of Echinococcus granulosus in laboratory rodents. Journal of Parasitology 58, 427–30.CrossRefGoogle ScholarPubMed
Worbes, H. (1992). Zum Vorkommen von Echinococcus granulosus und E. multilocularis in Thüringen. Angetvandte Parasitologie 33, 193204.Google Scholar
Zeyhle, E., Abel, M. & Frank, W. (1990). Epidemiological studies on the occurrence of Echinococcus multilocularis in definitive and intermediate hosts in Germany. Mitteilungen der Österreichischen Gesellschaft füur Tropenmedizin und Parasitologie 12, 221–32.Google Scholar