Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T05:56:31.712Z Has data issue: false hasContentIssue false

In vitro leishmanicidal activity of pyrazole-containing polyamine macrocycles which inhibit the Fe-SOD enzyme of Leishmania infantum and Leishmania braziliensis species

Published online by Cambridge University Press:  17 March 2014

P. NAVARRO*
Affiliation:
Instituto de Química Médica, Centro de Química Orgánica M. Lora-Tamayo, CSIC, E-28006 Madrid, Spain
M. SÁNCHEZ-MORENO
Affiliation:
Departamento de Parasitología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
C. MARÍN
Affiliation:
Departamento de Parasitología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
E. GARCÍA-ESPAÑA
Affiliation:
Departamento de Química Inorgánica, Instituto de Ciencia Molecular, Universidad de Valencia, E-46980 Paterna (Valencia), Spain
I. RAMÍREZ-MACÍAS
Affiliation:
Departamento de Parasitología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
F. OLMO
Affiliation:
Departamento de Parasitología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
M. J. ROSALES
Affiliation:
Departamento de Parasitología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
F. GÓMEZ-CONTRERAS
Affiliation:
Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, E-28040 Madrid, Spain
M. J. R. YUNTA
Affiliation:
Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, E-28040 Madrid, Spain
R. GUTIERREZ-SÁNCHEZ
Affiliation:
Departamento de Estadística. Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
*
* Corresponding author: Instituto de Química Médica, Centro de Química Orgánica M. Lora-Tamayo, CSIC, E-28006 Madrid, Spain. E-mail: [email protected] and [email protected]

Summary

The in vitro leishmanicidal activity and cytotoxicity of pyrazole-containing macrocyclic polyamines 14 was assayed on Leishmania infantum and Leishmania braziliensis species. Compounds 14 were more active and less toxic than glucantime and both infection rates and ultrastructural alterations confirmed that 1 and 2 were highly leishmanicidal and induced extensive parasite cell damage. Modifications in the excretion products of parasites treated with 13 were also consistent with substantial cytoplasm alterations. Compound 2 was highlighted as a potent inhibitor of Fe-SOD in both species, whereas its effect on human CuZn-SOD was poor. Molecular modelling suggested that 2 could deactivate Fe-SOD due to a sterically favoured enhanced ability to interact with the H-bonding net that supports the enzyme`s antioxidant features.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abreu, I. A. and Cabelli, D. E. (2010). Superoxide dismutases: a review of the metal-associated mechanistic variations. Biochimica et Biophysica Acta 1804, 263274.Google Scholar
Amato, V. S., Tuon, F. F., Siqueira, A. M., Nicodemo, A. C. and Neto, V. A. (2007). Treatment of mucosal leishmaniasis in Latin America: systematic review. American Journal of Tropical Medicine and Hygiene 77, 266274.Google Scholar
Arán, V. J., Kumar, M., Molina, J., Lamarque, L., Navarro, P., García-España, E., Ramírez, J. A., Luis, S. V. and Escuder, B. (1999). Synthesis and protonation behavior of 26-membered oxaaza- and polyazamacrocycles containing two heteroaromatic units of 3,5-disubstituted pyrazole or 1-benzylpyrazole: a potentiometric and 1H and 13C NMR study. Journal of Organic Chemistry 64, 61356146.Google Scholar
Beyer, W. F. and Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry 161, 559566.Google Scholar
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.Google Scholar
Bringaud, F., Riviere, L. and Coustou, V. (2006). Energy metabolism of Trypanosomatids: adaptation to available carbon sources. Molecular and Biochemical Parasitology 149, 19.Google Scholar
Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M. Jr., Onufriev, A., Simmerling, C., Wang, B. and Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry 26, 16681688.Google Scholar
Cazzulo, J. J. (1992). Aerobic fermentation of glucose by trypanosomatids. FASEB Journal 6, 31533161.Google Scholar
Chappuis, F., Sundar, S., Hailu, A., Ghalib, H., Rijal, S., Peeling, R. W., Alvar, J. and Boelaert, M. (2007). Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nature Reviews Microbiology 5, 873882.Google Scholar
Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W. and Kollman, P. A. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society 117, 51795197.Google Scholar
Croft, S. L., Sundar, S. and Fairlamb, A. H. (2006). Drug resistance in leishmaniasis. Clinical Microbiology Reviews 19, 111126.Google Scholar
Deschacht, M., Van Assche, T., Hendrickx, S., Bult, H., Maes, L. and Cos, P. (2012). Role of oxidative stress and apoptosis in the cellular response of murine macrophages upon Leishmania infection. Parasitology 139, 14291437.Google Scholar
Fernández-Becerra, C., Sánchez-Moreno, M., Osuna, A. and Opperdoes, F. R. (1997). Comparative aspects of energy metabolism in plant trypanosomatids. Journal of Eukaryotic Microbiology 44, 523529.Google Scholar
Ginger, M. (2005). Trypanosomatid biology and euglenozoan evolution: new insights and shifting paradigms revealed through genome sequencing. Protist 156, 377392.Google Scholar
González, P., Marín, C., Rodríguez-González, I., Hitos, A. B., Rosales, M. J., Reina, M., Díaz, J. G., González-Coloma, A. and Sánchez-Moreno, M. (2005). In vitro activity of C20-diterpenoid alkaloid derivatives in promastigotes and intracellular amastigotes of Leishmania infantum . International Journal of Antimicrobial Agents 25, 136141.Google Scholar
Guerra, J. A., Prestes, S. R., Silveira, H., Coelho, L. I. A. R., Gama, P., Moura, A., Amato, V., Barbosa, M. G. V. and Ferreira, L. C. L. (2011). Mucosal leishmaniasis caused by Leishmania (Viannia) braziliensis and Leishmania (Viannia) guyanensis in the Brazilian Amazon. PLoS Neglected Tropical Diseases 5, e980. doi: 10.1371/journal.pntd.0000980637-46.Google Scholar
Han, W. G., Lovell, T. and Noodleman, L. (2002). Coupled redox potentials in manganese and iron superoxide dismutases from reaction kinetics and density functional/electrostatics calculations. Inorganic Chemistry 41, 205218.Google Scholar
Hypercube, Inc. (n.d.) HyperChem(TM) Professional 8.0. Hypercube, Inc., Gainesville, FL, USA.Google Scholar
Kirkinezos, I. G. and Moraes, C. T. (2001). Reactive oxygen species and mitochondrial diseases. Cell and Developmental Biology 12, 449457.Google Scholar
Kumar, M., Bhalla, V. S. N., Kumar, V., Singh, M. and Singh, G. (2001). Synthesis of new macrocyclic polyaza compounds containing 1-methylpyrazole. Journal of Inclusion Phenomena and Macrocyclic Chemistry 39, 241245.Google Scholar
Lamarque, L., Navarro, P., Miranda, C., Arán, V. J., Ochoa, C., Escartí, F., García-España, E., Latorre, F., Luis, S. V. and Miravet, J. F. (2001). Dopamine interaction in the absence and in the presence of Cu2+ ions with macrocyclic and macrobicyclic polyamines containing pyrazole units. Crystal structure of [Cu2(L1)(H2O)2](ClO4)4 and [Cu2(H−1L3)](ClO4)3·2H2O. Journal of the American Chemical Society 123, 1056010570.Google Scholar
Leite, S. R. A. (1998). Basicities of primary arylamines and calculated amine nitrogen electronic charges. Eclética Química 23, 7180.Google Scholar
Longoni, S. S., Sánchez-Moreno, M., Rivera-López, J. E. and Marín, C. (2013). Leishmania infantum excreted iron superoxide dismutase purification and its application to the diagnosis of canine Leishmaniasis. Comparative Immunology, Microbiology and Infectious Diseases. http://dx.doi.org/10.1016/j.cimid.2013.05.00415.Google Scholar
Lukes, J., Mauricio, I. L., Schönian, G. G., Dujardin, J. C., Soteriadou, K., Dedet, J. P., Kuhis, K., Tintaya, K. W. Q., Jirku, M., Chocholová, E., Haralambous, C., Pratlong, F., Obornik, M., Horák, A., Ayala, F. J. and Miles, M. A. (2007). Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proceedings of the National Academy of Sciences USA 104, 93759380.Google Scholar
Marín, C., Ramírez-Macías, I., López-Céspedes, A., Olmo, F., Villegas, N., Díaz, J. G., Rosales, M. J., Gutiérrez-Sánchez, R. and Sánchez-Moreno, M. (2011). In vitro and in vivo trypanocidal activity of flavonoids from Delphinium staphisagria against Chagas disease. Journal of Natural Products 74, 744750.Google Scholar
Michels, P. A. M., Bringaud, F., Herman, M. and Hannaert, V. (2006). Metabolic functions of glycosomes in trypanosomatids. Biochimica et Biophysica Acta 1763, 14631477.Google Scholar
Miller, A. F. (2004). Superoxide dismutases: active sites that save, but a protein that kills. Current Opinion in Chemical Biology 8, 162168.Google Scholar
Miller, A. F., Sorkin, D. L. and Padmakumar, K. (2005). Anion binding properties of reduced and oxidized iron-containing superoxide dismutase reveal no requirement for tyrosine 34. Biochemistry 44, 59695981.Google Scholar
Miranda, C., Escartí, F., Lamarque, L., Yunta, M. J. R., Navarro, P., García-España, E. and Jimeno, M. L. (2004). New 1H-pyrazole-containing polyamine receptors able to complex L-glutamate in water at physiological pH values. Journal of the American Chemical Society 126, 823833.Google Scholar
Muñoz, I. G., Morán, J. F., Becana, M. and Montoya, G. (2005). The crystal structure of an eukaryotic iron superoxide dismutase suggests intersubunit cooperation during catalysis. Protein Science 14, 387394.Google Scholar
Nwaka, S., Besson, D., Ramirez, B., Maes, L., Matheeussen, A., Bickle, Q., Mansour, N. R., Yousif, F., Townson, S., Gokool, S., Cho-Ngwa, F., Samje, M., Misra-Bhattacharya, S., Murthy, P. K., Fakorede, F., Paris, J. M., Yeates, C., Ridley, R., Van Voorhis, W. C. and Geary, T. (2011). Integrated dataset of screening hits against multiple neglected disease pathogens. PLoS Neglected Tropical Diseases 5, e1412. doi: 10.1371/journal.pntd.0001412.Google Scholar
Palumbo, E. (2009). Current treatment for cutaneous leishmaniasis: a review. American Journal of Therapeutics 16, 178182.CrossRefGoogle ScholarPubMed
Perrin, D. D., Armarego, W. L. F. and Perrin, D. R. (1980). Purification of Laboratory Chemicals. Pergamon Press, Oxford, UK.Google Scholar
Reviriego, F., Navarro, P., García-España, E., Abelda, M. T., Frías, J. C., Domenech, A., Yunta, M. J. R., Costa, R. and Ortí, E. (2008). Diazatetraester 1 H-pyrazole crowns as fluorescent chemosensors for AMPH, METH, MDMA (ecstasy), and dopamine. Organic Letters 10, 50995102.Google Scholar
Sánchez-Moreno, M., Marín, C., Navarro, P., Lamarque, L., García-España, E., Miranda, C., Huertas, O., Olmo, F., Gómez-Contreras, F., Pitarch, J. and Arrebola, F. (2012 a). In vitro and in vivo trypanosomicidal activity of pyrazole-containing macrocyclic and macrobicyclic polyamines: their action on acute and chronic phases of Chagas disease. Journal of Medicinal Chemistry 55, 42314243.CrossRefGoogle ScholarPubMed
Sánchez-Moreno, M., Gómez-Contreras, F., Navarro, P., Marín, C., Olmo, F., Yunta, M. J. R., Sanz, A. M., Rosales, M. J., Cano, C. and Campayo, L. (2012 b). Phthalazine derivatives containing imidazole rings behave as Fe-SOD inhibitors and show remarkable anti-T. cruzi activity in immunodeficient-mouse mode of infection. Journal of Medicinal Chemistry 55, 99009913.Google Scholar
Stallings, W. C., Metzger, A. L., Pattridge, K. A., Fee, J. A. and Ludwig, M. L. (1991). Structure–function relationships in iron and manganese superoxide dismutases. Free Radical Research Communications 12–13, 259268.Google Scholar
Sundar, S. and Chatterjee, M. (2006). Visceral leishmaniasis: current therapeutic modalities. Indian Journal of Medical Research 123, 345352.Google Scholar
Turrens, J. F. (2004). Oxidative stress and antioxidant defences: a target for the treatment of diseases caused by parasitic protozoa. Molecular Aspects of Medicine 25, 211220.Google Scholar
Van Assche, T., Deschacht, M., Inocencio da Luz, R. A., Maes, L. and Cos, P. (2011). Leismania-macrophage interactions: insights into the redox biology. Free Radical Biology and Medicine 51, 337351.CrossRefGoogle ScholarPubMed
World Health Organization (2010). Expert Committee on the Control of Leishmaniases Meeting. WHO Technical Reports Series No. 949. World Health Organization, Geneva, Switzerland.Google Scholar
Woster, P. M. (2007). Antiprotozoal agents (African trypanosomiasis, Chagas disease and leishmaniasis). In Comprehensive Medicinal Chemistry II (ed. Taylor, J. B. and Triggle, D. J.), pp. 815842. Elsevier, Amsterdam, the Netherlands.Google Scholar
Yikilmaz, E., Xie, J., Brunold, T. C. and Miller, A. F. (2002). Hydrogen-bond-mediated tuning of the redox potential of the non-heme Fe site of superoxide dismutase. Journal of the American Chemical Society 124, 34823483.Google Scholar
Yikilmaz, E., Rodgers, D. W. and Miller, A. F. (2006). The crucial importance of chemistry in the structure-function link: manipulating hydrogen bonding in iron-containing superoxide dismutase. Biochemistry 45, 11511161.Google Scholar