Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T15:57:18.510Z Has data issue: false hasContentIssue false

In vitro formation of ookinetes and functional maturity of Plasmodium berghei gametocytes

Published online by Cambridge University Press:  06 April 2009

C. J. Janse
Affiliation:
Department of Tropical Veterinary Medicine and Protozoology, State University of Utrecht, P.O. Box 80172, 3508 TD Utrecht, The Netherlands
B. Mons
Affiliation:
Laboratory of Parasitology (Medical Faculty), State University of Leiden, Wassenaarseweg 62, 2333 AL Leiden, The Netherlands
R. J. Rouwenhorst
Affiliation:
Laboratory of Parasitology (Medical Faculty), State University of Leiden, Wassenaarseweg 62, 2333 AL Leiden, The Netherlands
P. F. J. van der Klooster
Affiliation:
Department of Tropical Veterinary Medicine and Protozoology, State University of Utrecht, P.O. Box 80172, 3508 TD Utrecht, The Netherlands
J. P. Overdulve
Affiliation:
Department of Tropical Veterinary Medicine and Protozoology, State University of Utrecht, P.O. Box 80172, 3508 TD Utrecht, The Netherlands
H. J. van der Kaay
Affiliation:
Laboratory of Parasitology (Medical Faculty), State University of Leiden, Wassenaarseweg 62, 2333 AL Leiden, The Netherlands

Extract

In vitro formation of Plasmodium berghei ookinetes was studied. Gametocytes produced in vitro were obtained from heart and tail blood of Swiss mice and from blood removed from mosquitoes directly after feeding on these mice. In vitro produced gametocytes were obtained from short-term cultures of the erythrocytic stages of P. berghei. Reproducible ookinete production was obtained in medium RPMI 1640, pH 7°8–8°0, using in vivo and in vitro produced gametocytes. The morphology of developmental stages of ookinetes and degenerate forms at the light microscope level is described. More ookinetes were produced in medium RPMI 1640 compared to MEM and ookinete yield – defined as the ratio between the number of in vitro produced ookinetes/105 erythrocytes and the number of exflagellations/105 erythrocytes in the infected blood – increased with lower erythrocyte densities in the cultures within the range of dilutions tested. A linear relationship existed between gametocytaemia and the number of ookinetes produced. The methods for in vitro ookinete formation and for estimating ookinete yields enabled us to study aspects of functional maturity of gametocytes independent of mosquitoes. The numbers of exflagellating gametocytes and in vitro ookinete yields in tail blood corresponded with those in heart blood and blood ingested by mosquitoes, suggesting a random distribution of functionally mature gametocytes within the vertebrate host.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carter, R. & Gwadz, R. W. (1980). Infectiousness and gamete immunization in malaria. In Malaria II (ed. Kreier, J. P.), pp. 263–98. New York: Academic Press.CrossRefGoogle Scholar
Chen, D. H., Seeley, D. & Good, W. C. (1977). In vitro Plasmodium berghei (Malaria) ookinete formation. Abstracts of the 5th International Congress of Protozoology, New York. p. 21.Google Scholar
Gao, X. Z. & Yuan, G. (1981). Morphological observations on the ookinete formation in rodent plasmodium (Plasmodiuin berghei yoelii) in vitro. Acta Zoologica Sinica 27, 153–7.Google Scholar
Gass, R. F. (1977). Influences of blood digestion on the development of Plasmodiuni gallinaceum (Brumpt) in the midgut of Aedes aegypti (L.) Acta tropica 34, 127–40.Google ScholarPubMed
Gass, R. F. & Yeates, R. A. (1979). In vitro damage of cultured ookinetes of Plasmodium gallinaceum by digestive proteinases from susceptible. Aedes aegypti Acta tropica 36, 243–52.Google ScholarPubMed
Janse, C. J., Moss, B., Croon, J. J. A. B. & van dee Kaay, H. J. (1984). Long term in vitro cultures of Piasmodium berghei and preliminary observations on gametocytogenesis. International Journal for Parasitology 14, 317–20.CrossRefGoogle Scholar
Landau, I., Miltoen, F., Boulard, Y., Chabaud, A. G. & Baccam, P. (1979). Etudes sur les gamétocytes des Plasmodium du group (Vivax): morphologie, évolution prise par les Anophèles et infectivité des microgamétocytes de Plasmodium yoelii (1). Annales de Parasitologie 52, 145–61.Google Scholar
Moss, B., Janse, C. J., Boorsma, E. G. & van der Kaay, H. J. (1985). Development of sexual and asexual stages of Plasmodium berghei in synchronous infections and in vitro cultures. Parasitology (in the Press.)Google Scholar
Mons, B., Janse, C. J., Croon, J. J. A. B. & Van der Kaay, H. J. (1983). In vitro culture of Plasmodium berghei using a new suspension system. Internalional Journal for Parasitology 13, 213–17.CrossRefGoogle ScholarPubMed
Nijuout, M. M. (1979). Plasmodium gallinaceum: exflagellation stimulated by a mosquito factor. Experimental Parasitology 48, 7580.CrossRefGoogle Scholar
Sinden, R. E. (1983). Sexual development of malarial parasites. In Advances in Parasitology (ed. Baker, J. R. and Muller, R.), pp. 154216. London: Academic Press.Google Scholar
Van der Kaay, H. J. & Boorsma, L. (1977). A susceptible and refractive strain of Anopheles atroparvus to infection with Plasmodium berghei berghei. Acta Leidensia 45, 1319.Google ScholarPubMed
Weiss, M. M. & Vanderbero, J. P. (1977). Studies on Plasmodium ookinetes. II. In vitro formation of Plasmodium berghei ookinetes. Journal of Parasitology 63, 932–4.CrossRefGoogle Scholar