Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T23:16:55.119Z Has data issue: false hasContentIssue false

In vitro activity of ‘Mexican Arnica’ Heterotheca inuloides Cass natural products and some derivatives against Giardia intestinalis

Published online by Cambridge University Press:  03 November 2014

JOSÉ LUIS RODRÍGUEZ-CHÁVEZ
Affiliation:
Instituto de Química, Universidad Nacional Autónoma de México, 04510 México, D. F., México
YADIRA RUFINO-GONZÁLEZ
Affiliation:
Laboratorio de Parasitología Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, 04530 México, D. F., México
MARTHA PONCE-MACOTELA
Affiliation:
Laboratorio de Parasitología Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, 04530 México, D. F., México
GUILLERMO DELGADO*
Affiliation:
Instituto de Química, Universidad Nacional Autónoma de México, 04510 México, D. F., México
*
*Corresponding author. Instituto de Química, Universidad Nacional Autónoma de México, 04510 México, D. F., México. E-mail: [email protected]

Summary

Giardiasis is a gastrointestinal disease that affects humans and other animals caused by parasitic protists of the genus Giardia. Giardia intestinalis (Syn. Giardia lamblia; Giardia duodenalis) infections can cause acute or chronic diarrhoea, dehydration, abdominal discomfort and weight loss. Metronidazole is the most widely used drug for treating giardiasis. Although effective, metronidazol has undesirable secondary effects. Plants used in traditional medicine as antidiarrhoeals or antiparasitics may represent alternative sources for new compounds to treat giardiasis. Heterotheca inuloides Cass. (Asteraceae/Compositae) plant is widely used in Mexican traditional medicine. The following secondary metabolites were isolated from H. inuloides flowers: 7-hydroxy-3,4-dihydrocadalene (1), 7-hydroxycadalene (2), 3,7-dihydroxy-3(4H)-isocadalen-4-one (3), 1R,4R-hydroxy-1,2,3,4-tetrahydrocadalen-15-oic acid (4), quercetin (5), quercetin-3,7,3′-trimethyl ether (6), quercetin-3,7,3′,4′-tetramethyl ether (7) and eriodictyol-7,4′-dimethyl ether (8). The activity of these compounds against Giardia intestinalis trophozoites was assessed in vitro as was the activity of the semisynthetic compounds 7-acetoxy-3,4-dihydrocadalene (9), 7-benzoxy-3,4-dihydrocadalene (10), 7-acetoxycadalene (11), 7-benzoxycadalene (12), quercetin pentaacetate (13) and 7-hydroxycalamenene (14). Among these, 7-hydroxy-3,4-dihydrocadalene (1) and 7-hydroxycalamenene (14) were the most active, whereas the remaining compounds showed moderate or no activity. The G. intestinalis trophozoites exposed to compound 1 showed marked changes in cellular architecture along with ultrastructural disorganization. The aim of this study was to evaluate the giardicidal activity of selected H. inuloides metabolites and some semisynthetic derivatives using an in vitro experimental model of giardiasis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abaza, H., El-Zayadi, A., Kabil, S. M. and Rizk, H. (1998). Nitazoxanide in the treatment of patients with intestinal protozoan and helminthic infections: a report on 546 patients in Egypt. Current Therapeutic Research 59, 116121.CrossRefGoogle Scholar
Ali, H. A., Chowdhury, A. K., Rahman, A. K., Borkowski, T., Nahar, L. and Sarker, S. D. (2008). Pachypodol, a flavonol from the leaves of Calycopteris floribunda, inhibits the growth of CaCo 2 colon cancer cell line in vitro. Phytotherapy Research 22, 16841687.Google Scholar
Amaral, F. M. M., Ribeiro, M. N. S., Barbosa-Filho, J. M., Reis, A. S., Nascimento, F. R. F. and Macedo, R. O. (2006). Plants and chemical constituents with giardicidal activity. Revista Brasileira de Farmacognosia 16, 696720.Google Scholar
Andrade-Cetto, A. (2009). Ethnobotanical study of the medicinal plants from Tlanchinol, Hidalgo, México. Journal of Ethnopharmacology 122, 163171.Google Scholar
Arrieta, J., Reyes, B., Calzada, F., Cedillo-Rivera, R. and Navarrete, A. (2001). Amoebicidal and giardicidal compounds from the leaves of Zanthoxylum liebmannianun . Fitoterapia 72, 295297.CrossRefGoogle ScholarPubMed
Barbosa, E., Calzada, F. and Campos, R. (2007). In vivo antigiardial activity of three flavonoids isolated of some medicinal plants used in Mexican traditional medicine for the treatment of diarrhea. Journal of Ethnopharmacology 109, 552554.Google Scholar
Bautista, E., Calzada, F., Ortega, A. and Yépez-Mulia, L. (2011). Antiprotozoal activity of flavonoids isolated from Mimosa tenuiflora (Fabaceae-Mimosoideae). Journal of the Mexican Chemical Society 55, 251253.Google Scholar
Bendesky, A., Menéndez, D. and Ostrosky-Wegman, P. (2002). Is metronidazole carcinogenic? Mutation Research 511, 133144.CrossRefGoogle ScholarPubMed
Bohlmann, F. and Zdero, C. (1976). Natürlich vorkommende Terpen-Derivate, 63. Über die Inhaltsstoffe von Heterotheca inuloides Cass. Chemische Berichte 109, 20212025.Google Scholar
Bradley, W. G., Karlsson, I. J. and Rassol, C. G. (1977). Metronidazole neuropathy. British Medical Journal 3, 610611.Google Scholar
Buret, A. G. (2007). Mechanisms of epithelial dysfunction in giardiasis. Gut 56, 316317.Google Scholar
Busatti, H. G. N. O. and Gomes, M. A. (2007). A simple colourimetric method to determine anti-giardial activity of drugs. Parasitology Research 101, 819821.Google Scholar
Busatti, H. G. N. O., Santos, J. F. G. and Gomes, M. A. (2009). The old and new therapeutic approaches to the treatment of giardiasis: where are we? Biologics: Targets and Therapy 3, 273287.Google Scholar
Calderón, R. G. and Rzedowski, J. (2005). Flora Fanerogámica del Valle de México. Instituto de Ecología y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Pátzcuaro, Michoacán, México.Google Scholar
Calzada, F. (2005) Additional antiprotozoal constituents from Cuphea pinetorum, a plant used in Mayan traditional medicine to treat diarrhoea. Phytotherapy Research 19, 725727.Google Scholar
Calzada, F. and Alanís, A. D. (2007). Additional antiprotozoal flavonol glycosides of the aerial parts of Helianthemum glomeratum . Phytotherapy Research 21, 7880.Google Scholar
Calzada, F., Meckes, M., Cedillo-Rivera, R., Tapia-Contreras, A. and Mata, R. (1998). Screening of Mexican medicinal plants for antiprotozoal activity. Pharmaceutical Biology 36, 305309.Google Scholar
Calzada, F., Cervantes-Martínez, J. A. and Yépez-Mulia, L. (2005). In vitro antiprotozoal activity from the roots of Geranium mexicanum and its constituents on Entamoeba histolytica and Giardia lamblia . Journal of Ethnopharmacology 98, 191193.CrossRefGoogle ScholarPubMed
Calzada, F., Yépez-Mulia, L. and Aguilar, A. (2006). In vitro susceptibility of Entamoeba histolytica and Giardia lamblia to plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. Journal of Ethnopharmacology 108, 367370.Google Scholar
Castillo-Juárez, I., González, V., Jaime-Aguilar, H., Martínez, G., Linares, E., Bye, R. and Romero, I. (2008). Anti-Helicobacter pylori activity of plants used in Mexican traditional medicine for gastrointestinal disorders. Journal of Ethnopharmacology 122, 402405.Google Scholar
Coll, J. C. and Bowden, B. F. (1986). The application of vacuum liquid chromatography to the separation of terpene mixtures. Journal of Natural Products 49, 934936.Google Scholar
Daly, E. R., Roy, S. J., Blaney, D. D., Manning, J. S., Hill, V. R., Xiao, L. and Stull, J. W. (2010). Outbreak of giardiasis associated with a community drinking-water source. Epidemiology and Infection 138, 491500.Google Scholar
Dawson, D. (2005) Foodborne protozoan parasites. International Journal of Food Microbiology 103, 207227.Google Scholar
de la Torre, M. D. L., Rodrigues, A. G. P., Tomé, A. C., Silva, A. M. S. and Cavaleiro, J. A. S. (2004). [60] Fullerene–flavonoid dyads. Tetrahedron 60, 35813592.Google Scholar
Delgado, G., Olivares, M. S., Chávez, M. I., Ramírez-Apan, T., Linares, E., Bye, R. and Espinosa-García, F. J. (2001). Antiinflammatory constituents from Heterotheca inuloides . Journal of Natural Products 64, 861864.Google Scholar
Dutta, N. K., Mazumdar, K., Mishra, U. S., Dastidar, S. G. and Park, J. H. (2007). Isolation and identification of a flavone (quercetin) from Butea frondosa bark. Pharmaceutical Chemistry Journal 41, 269271.Google Scholar
Escobedo, A. A., Alvarez, G., González, M. E., Almirall, P., Cañete, R., Cimerman, S., Ruiz, A. and Pérez, R. (2008). The treatment of giardiasis in children: single-dose tinidazole compared with 3 days of nitazoxanide. Annals of Tropical Medicine and Parasitology 102, 199207.CrossRefGoogle ScholarPubMed
Feng, Y. and Xiao, L. (2011). Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clinical Microbiology Reviews 24, 110140.Google Scholar
Gallagher, M. J. and Sutherland, M. D. (1965). 2-Hydroxy- and 7-Hydroxy-cadalene. Australian Journal of Chemistry 18, 11111113.Google Scholar
Gardner, T. B. and Hill, D. R. (2001). Treatment of giardiasis. Clinical Microbiology Reviews 14, 114128.Google Scholar
González-Stuart, A. E. (2010). Use of medicinal plants in Monterrey, Mexico. Notulae Scientia Biologicae 2, 711.Google Scholar
Heaney, C. J., Campeau, N. G. and Lindell, E. P. (2003). MR imaging and diffusion-weighted imaging changes in metronidazole (Flagyl)-induced cerebellar toxicity. American Journal of Neuroradiology 24, 16151617.Google Scholar
Hersch-Martínez, P. (1997). Medicinal plants and regional traders in Mexico: physiographic differences and conservational challenge. Economic Botany 51, 107120.Google Scholar
Hollm-Delgado, M. G., Gilman, R. H., Bern, C., Cabrera, L., Sterling, C. R., Black, R. E. and Checkley, W. (2008). Lack of an adverse effect of Giardia intestinalis infection on the health of Peruvian children. American Journal of Epidemiology 168, 647655.Google Scholar
Hounkong, K., Sawangjaroen, N. and Phongpaichit, S. (2011). A colorimetric method for the evaluation of antigiardial drugs in vitro. Experimental Parasitology 127, 600603.Google Scholar
Kappus, K. D., Lundgren, R. G., Juranek, D. D., Roberts, J. M. and Spencer, H. C. (1994). Intestinal parasitism in the United States: update on a continuing problem. American Journal of Tropical Medicine and Hygiene 50, 705713.CrossRefGoogle ScholarPubMed
Keister, D. B. (1983). Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Transactions of the Royal Society of Tropical Medicine and Hygiene Advance Access 77, 487488.Google Scholar
Kubo, I., Muroi, H., Kubo, A., Chaudhuri, S. K., Sánchez, Y. and Ogura, T. (1994). Antimicrobial agents from Heterotheca inuloides . Planta Medica 60, 218221.CrossRefGoogle ScholarPubMed
Kubo, I., Chaudhuri, S. K., Kubo, Y., Sanchez, Y., Ogura, T., Saito, T., Ishikawa, H. and Haraguchi, H. (1996). Cytotoxic and antioxidative sesquiterpenoids from Heterotheca inuloides . Planta Medica 62, 427430.Google Scholar
Lopez-Velez, R., Batlle, C., Jiménez, C., Navarro, M., Norman, F. and Perez-Molina, J. (2010). Short course combination therapy for giardiasis after nitroimidazole failure. American Journal of Tropical Medicine and Hygiene 83, 171173.CrossRefGoogle ScholarPubMed
Lozoya, X., Aguilar, A. and Camacho, R. (1987). Encuesta sobre el uso actual de plantas en la Medicina Tradicional Mexicana. Revista Médica del Instituto Mexicano del Seguro Social 25, 283291.Google Scholar
Martínez, M. D., Alvarado, F. R., Mendoza, C. M. and Basurto, P. F. (2006). Plantas medicinales de cuatro mercados del estado de Puebla, México. Boletín de la Sociedad Botánica de México 79, 7987.Google Scholar
McGrath, N. M., Kent-Smith, B. and Franzco, D. M. (2007). Reversible optic neuropathy due to metronidazole. Clinical and Experimental Ophthalmology 35, 585586.Google Scholar
Misra, P. K., Kumar, A., Agarwal, V. and Jagota, S. C. (1995). A comparative clinical trial of albendazole versus metronidazole in giardiasis. Indian Pediatrics 32, 291294.Google Scholar
Mørch, K., Hanevik, K., Rortveit, G., Wensaas, K. A., Eide, G. E., Hausken, T. and Langeland, N. (2009). Severity of Giardia infection associated with post-infectious fatigue and abdominal symptoms two years after. BMC Infectious Diseases 9, 206.CrossRefGoogle ScholarPubMed
Morrison, H. G., McArthur, A. G., Gillin, F. D., Aley, S. B., Adam, R. D., Olsen, G. J., Best, A. A., Cande, W. Z., Chen, F., Cipriano, M. J., Davids, B. J., Dawson, S. C., Elmendorf, H. G., Hehl, A. B., Holder, M. E., Huse, S. M., Kim, U. U., Lasek-Nesselquist, E., Manning, G., Nigam, A., Nixon, J. E., Palm, D., Passamaneck, N. E., Prabhu, A., Reich, C. I., Reiner, D. S., Samuelson, J., Svard, S. G. and Sogin, M. L. (2007). Genomic minimalism in the early diverging intestinal parasite Giardia lamblia . Science 317, 19211926.Google Scholar
Müller, N. and von Allmen, N. (2005). Recent insights into the mucosal reactions associated with Giardia lamblia infections. International Journal for Parasitology 35, 13391347.Google Scholar
Nikolić, A., Klun, I., Bobić, B., Ivović, V., Vujanić, M., Živković, T. and Djurković-Djaković, O. (2011). Human giardiasis in Serbia: asymptomatic vs symptomatic infection. Parasite 18, 197201.Google Scholar
Newman, R. D., Moore, S. R., Lima, A. A., Nataro, J. P., Guerrant, R. L. and Sears, C. L. (2001). A longitudinal study of Giardia lamblia infection in north-east Brazilian children. Tropical Medicine and International Health 6, 624634.Google Scholar
Okhuysen, P. C. (2001). Traveler's diarrhea due to intestinal protozoa. Clinical Infectious Diseases 33, 110114.CrossRefGoogle ScholarPubMed
Peraza-Sánchez, S. R., Poot-Kantún, S., Torres-Tapia, L. W., May-Pat, F., Simá-Polanco, P. and Cedillo-Rivera, R. (2005). Screening of native plants from yucatan for anti-giardia lamblia activity. Pharmaceutical Biology 43, 594598.Google Scholar
Pereira, A. Q., Chaves, F. C. M., Pinto, F. C., Leitão, S. G. and Bizzo, H. R. (2011). Isolation and identification of cis-7-hydroxycalamenene from the essential oil of Croton cajucara Benth. Journal of Essential Oil Research 23, 2023.Google Scholar
Perry, D. A., Morrison, H. G. and Adam, R. D. (2011). Optical map of the genotype A1 WB C6 Giardia lamblia genome isolate. Molecular and Biochemical Parasitology 180, 112114.CrossRefGoogle ScholarPubMed
Picq, M., Prigent, A. F., Némoz, G., André, A. C. and Pacheco, H. (1982). Pentasubstituted quercetin analogues as selective inhibitors of particulate 3′,5′-cyclic-AMP phosphodiesterase from rat brain. Journal of Medicinal Chemistry 25, 11921198.Google Scholar
Ponce-Macotela, M., Navarro, I., Martínez, M. N. and Álvarez, R. (1994). Efecto antigiardiásico in vitro de 14 extractos de plantas. Revista de Investigación Clínica 46, 343347.Google Scholar
Ponce-Macotela, M., Rufino-González, Y., de la Mora-de la Mora, J. I., González-Maciel, A., Reynoso-Robles, R. and Martínez-Gordillo, M. N. (2001). Mortality and morphological changes in Giardia duodenalis induced by exposure to ethanolic extracts of Justicia spicigera . Proceedings of the Western Pharmacology Society 44, 151152.Google Scholar
Ponce-Macotela, M., Rufino-González, Y., González-Maciel, A., Reynoso-Robles, R. and Martínez-Gordillo, M. N. (2006). Oregano (Lippia spp.) kills Giardia intestinalis trophozoites in vitro: antigiardiasic activity and ultrastructural damage. Parasitology Research 98, 557560.Google Scholar
Prado, M. S., Cairncross, S., Strina, A., Barreto, M. L., Oliveira-Assis, A. M. and Rego, S. (2005). Asymptomatic giardiasis and growth in young children; a longitudinal study in Salvador, Brazil. Parasitology 131, 5156.Google Scholar
Rodrigues, I. A., Azevedo, M. M. B., Chaves, F. C. M., Bizzo, H. R., Corte-Real, S., Alviano, D. S., Alviano, C. S., Rosa, M. S. S. and Vermelho, A. B. (2013). In vitro cytocidal effects of the essential oil from Croton cajucara (red sacaca) and its major constituent 7- hydroxycalamenene against Leishmania chagasi . BMC Complementary and Alternative Medicine 13, 249.CrossRefGoogle ScholarPubMed
Romero, C. R., Guerrero, L. R., Muñóz, G. M. R. and Geyne, C. A. (1997). Nitazoxanide for the treatment of intestinal protozoan and helminthic infections in Mexico. Transactions of the Royal Society of Tropical Medicine and Hygiene 91, 701703.Google Scholar
Rosas-Piñón, Y., Mejía, A., Díaz-Ruiz, G., Aguilar, M. I., Sánchez-Nieto, S. and Rivero-Cruz, J. F. (2012). Ethnobotanical survey and antibacterial activity of plants used in the Altiplane region of Mexico for the treatment of oral cavity infections. Journal of Ethnopharmacology 141, 860865.Google Scholar
Rufino-González, Y., Ponce-Macotela, M., González-Maciel, A., Reynoso-Robles, R., Jiménez-Estrada, M., Sánchez-Contreras, A. and Martínez-Gordillo, M. N. (2012). In vitro activity of the F-6 fraction of oregano against Giardia intestinalis . Parasitology 139, 434440.Google Scholar
Savioli, L., Smith, H. and Thompson, A. (2006). Giardia and Cryptosporidium join the ‘Neglected Diseases Initiative’. Trends in Parasitology 22, 203208.Google Scholar
Secretaría de Salud. Dirección General de Epidemiología. Vigilancia Epidemiológica Semana 32, 2013. Boletín Epidemiológico 2013. http://www.epidemiologia.salud.gob.mx/doctos/boletin/2013/semanas/sem32/pdf/cua4.3.pdf.Google Scholar
Segura, L., Freixa, B., Ringbom, T., Vila, R., Perera, P., Adzet, T., Bohlin, L. and Cañigueral, S. (2000). Anti-inflammatory activity of dichloromethane extract of Heterotheca inuloides in vivo and in vitro . Planta Medica 66, 553555.Google Scholar
Semple, J. C. (2008). Cytotaxonomy and cytogeography of the goldenaster genus Heterotheca (Asteraceae: Astereae). Botany 86, 886900.Google Scholar
Smith, P. D., Gillin, F. D., Spira, W. M. and Nash, T. E. (1982). Chronic giardiasis: studies on drug sensitivity, toxin production, and host immune response. Gastroenterology 83, 797803.Google Scholar
Solaymani-Mohammadi, S., Genkinger, J. M., Loffredo, C. A. and Singer, S. M. (2010). A meta-analysis of the effectiveness of albendazole compared with metronidazole as treatments for infections with Giardia duodenalis . PLOS Neglected Tropical Diseases 4, e682.Google Scholar
Tejman-Yarden, N., Millman, M., Lauwaet, T., Davids, B. J., Gillin, F. D., Dunn, L., Upcroft, J. A., Miyamoto, Y. and Eckmann, L. (2011). Impaired parasite attachment as fitness cost of metronidazole resistance in Giardia lamblia . Antimicrobial Agents and Chemotherapy 55, 46434651.Google Scholar
Upcroft, J. A. and Upcroft, P. (2001). Drug susceptibility testing of anaerobic protozoa. Antimicrobial Agents and Chemotherapy 45, 18101814.Google Scholar
Vasconcelos, J. M. J., Silva, A. M. S. and Cavaleiro, J. A. S. (1998). Chromones and flavanones from Artemisia campestris subsp. maritima . Phytochemistry 49, 14211424.Google Scholar
Villarreal, M. L., Alonso, D. and Melesio, G. (1992). Cytotoxic activity of some Mexican plants used in traditional medicine. Fitoterapia 41, 518522.Google Scholar
World Health Organization (2004). Intensified Control of Neglected Diseases. WHO Report of an International Workshop Berlin, 10–12 December 2003. http://whqlibdoc.who.int/hq/2004/WHO_CDS_CPE_CEE_2004.45.pdf Google Scholar
Yoder, J. S., Gargano, J. W., Wallace, R. M. and Beach, M. J. (2012). Giardiasis Surveillance-United States, 2009–2010. MMWR Surveillance Summaries 61, 1323. http://www.cdc.gov/mmwr/pdf/ss/ss6105.pdf.Google Scholar