Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T21:14:58.443Z Has data issue: false hasContentIssue false

Importance of serological cross-reactivity among Toxoplasma gondii, Hammondia spp., Neospora spp., Sarcocystis spp. and Besnoitia besnoiti

Published online by Cambridge University Press:  28 February 2017

LUÍS F. P. GONDIM*
Affiliation:
Universidade Federal da Bahia, Escola de Medicina Veterinária e Zootecnia, Departamento de Anatomia, Patologia e Clínicas, Av. Adhemar de Barros, 500, Ondina, 40170-110 Salvador, Bahia, Brazil
JOSÉ R. MINEO
Affiliation:
Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
GEREON SCHARES
Affiliation:
Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10,17493 Greifswald-Insel Riems, Germany
*
*Corresponding author: Universidade Federal da Bahia, Escola de Medicina Veterinária e Zootecnia, Departamento de Anatomia, Patologia e Clínicas, Av. Adhemar de Barros, 500, Ondina, 40170-110 Salvador, Bahia, Brazil. E-mail: [email protected]

Summary

Toxoplasma gondii, Neospora spp., Sarcocystis spp., Hammondia spp. and Besnoitia besnoiti are genetically related cyst-forming coccidia. Serology is frequently used for the identification of T. gondii, Neospora spp. and B. besnoiti-exposed individuals. Serologic cross-reactions occur in different tests among animals infected with T. gondii and H. hammondi, as well as among animals infected by T. gondii and N. caninum. Infections caused by N. caninum and N. hughesi are almost indistinguishable by serology. Neospora caninum, B. besnoiti and Sarcocystis spp. infections in cattle show some degree of serologic cross-reactivity. Antibody cross-reactivity between Neospora spp. and H. heydorni-infected animals is suspected, but not proven to occur. We review serologic cross-reactivity among animals and/or humans infected with T. gondii, Neospora spp., Sarcocystis spp., Hammondia spp. and B. besnoiti. Emphasis is laid upon antigens and serological methods for N. caninum diagnosis which were tested for cross-reactivity with related protozoa. Species-specific antigens, as well as stage-specific proteins have been identified in some of these parasites and have promising use for diagnosis and epidemiological surveys.

Type
Review Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Cambridge University Press 2017

INTRODUCTION

Toxoplasma gondii, Neospora spp., Sarcocystis spp., Hammondia spp. and Besnoitia besnoiti are closely related tissue cyst-forming parasites that belong to the family Sarcocystidae (Carreno et al. Reference Carreno, Schnitzler, Jeffries, Tenter, Johnson and Barta1998; Mugridge et al. Reference Mugridge, Morrison, Jakel, Heckeroth, Tenter and Johnson2000). The complete life cycles of Sarcocystidae organisms are complex and involve several parasite stages in definitive and intermediate hosts. In species with known life cycles, carnivore or omnivore definitive hosts harbour sexual reproduction of the parasites in intestinal epithelium. They may shed large numbers of parasite oocysts or sporocysts in their feces. Intermediate hosts acquire infection upon ingestion of sporulated oocysts or sporocysts in food or water. Sporozoites invade intestinal epithelial cells of the intermediate hosts and spread to other tissues as tachyzoites or merozoites. These latter stages may encyst as slow multiplying forms, called bradyzoites. Ingestion of tissue cysts by carnivorism is the main route of infection for definitive hosts, which culminates with the formation of oocysts in their intestinal epithelium (Levine and Ivens, Reference Levine and Ivens1981).

Among the cyst-forming parasites, T. gondii is the most studied. It induces disease in a wide range of warm-blooded animals, including humans (Tenter et al. Reference Tenter, Heckeroth and Weiss2000), and causes abortion in livestock, especially in sheep and goats (Buxton, Reference Buxton1998). Neospora caninum was originally described in dogs (Bjerkas et al. Reference Bjerkas, Mohn and Presthus1984; Dubey et al. Reference Dubey, Carpenter, Speer, Topper and Uggla1988a ), but it gradually gained more attention from the scientific community as a major cause of neonatal mortality and abortion in mainly cattle but also other ruminants (O'Toole and Jeffrey, Reference O'Toole and Jeffrey1987; Parish et al. Reference Parish, Maag-Miller, Besser, Weidner, McElwain, Knowles and Leathers1987; Anderson et al. Reference Anderson, Blanchard, Barr, Dubey, Hoffman and Conrad1991), besides causing neuromuscular disease in dogs (Ruehlmann et al. Reference Ruehlmann, Podell, Oglesbee and Dubey1995). Neospora hughesi was proposed as a new species in the genus Neospora and has been associated with myeloencephalitis in horses (Marsh et al. Reference Marsh, Barr, Packham and Conrad1998). The genus Sarcocystis possesses more than 100 species, with cattle as intermediate hosts of at least three species (S. cruzi, S. hirsuta and S. hominis). Among these, only S. cruzi is mildly pathogenic for cattle and generally non-pathogenic for its definitive host (dog) (reviewed by Dubey and Lindsay, Reference Dubey and Lindsay2006). Additional Sarcocystis spp. have been observed in bovine tissues, but their nomenclatures are still in debate (Dubey et al. Reference Dubey, More, van Wilpe, Calero-Bernal, Verma and Schares2016; Gjerde, Reference Gjerde2016). Three parasite species compose the genus Hammondia (H. hammondi, H. heydorni and H. triffittae), which have no known association with disease in humans or in naturally infected animals. However, Hammondia spp. are closely related to T. gondii and N. caninum (Mugridge et al. Reference Mugridge, Morrison, Jakel, Heckeroth, Tenter and Johnson2000), so diagnostic methods need to discriminate between infections caused by these parasites. Besnoitia besnoiti causes a debilitating disease mainly characterized by both a cutaneous and systemic manifestation (Alvarez-Garcia et al. Reference Alvarez-Garcia, Frey, Mora and Schares2013). Reproductive abnormalities in cattle may also occur, such as infertility in bulls and abortion when cows are infected during pregnancy (Cortes et al. Reference Cortes, Leitao, Gottstein and Hemphill2014). Bovine besnoitiosis was reported first more than a century ago in Southern France and Portugal, but the parasite has spread to several European countries during the last 10 years and besnoitiosis is now considered as a re-emerging disease in cattle, at least in Europe (Alvarez-Garcia et al. Reference Alvarez-Garcia, Frey, Mora and Schares2013).

Toxoplasma gondii and H. hammondi have cats as definitive hosts, which shed morphologically indistinguishable oocysts in their feces. Dogs and certain canid species serve as definitive hosts for N. caninum (McAllister et al. Reference McAllister, Dubey, Lindsay, Jolley, Wills and McGuire1998; Gondim et al. Reference Gondim, McAllister, Pitt and Zemlicka2004; King et al. Reference King, Slapeta, Jenkins, Al-Qassab, Ellis and Windsor2010; Dubey et al. Reference Dubey, Jenkins, Rajendran, Miska, Ferreira, Martins, Kwok and Choudhary2011) and H. heydorni (Blagburn et al. Reference Blagburn, Lindsay, Swango, Pidgeon and Braund1988; Slapeta et al. Reference Slapeta, Koudela, Votypka, Modry, Horejs and Lukes2002; Soares et al. Reference Soares, Cortez, Gennari, Sercundes, Keid and Pena2009). Hammondia triffittae has two species of wild canids (red fox and arctic fox) as definitive hosts (Gjerde and Dahlgren, Reference Gjerde and Dahlgren2011). Three Sarcocystis spp. from cattle, S. cruzi, S. hirsuta and S. hominis, have dogs, cats, and primates as definitive hosts, respectively (reviewed by Gjerde, Reference Gjerde2016). Besnoitia besnoiti is suspected to have a carnivore as definitive host, but so far no animal has been identified shedding oocysts of the parasite by natural or experimental infections (Basso et al. Reference Basso, Schares, Gollnick, Rutten and Deplazes2011).

Infections caused by T. gondii, Hammondia spp., Neospora spp., Sarcocystis spp. and B. besnoiti are assessed by a great variety of diagnostic tools, depending on the purpose of the analysis and available biological sample. In clinically affected individuals, detection of parasite-specific antibodies in serum or other body fluids is the most commonly employed diagnostic approach, except for Hammondia spp., and Sarcocystis spp. from cattle. Continuous cultivation of bovine Sarcocystis spp., like S. cruzi, is difficult (Andrews et al. Reference Andrews, Fayer and Dubey1990). To date, Hammondia spp. cannot be continuously grown in cell culture, which impedes production of parasite antigens needed to produce serologic tests for these parasites (Riahi et al. Reference Riahi, Darde, Bouteille, Leboutet and Pestre-Alexandre1995; Schares et al. Reference Schares, Meyer, Barwald, Conraths, Riebe, Bohne, Rohn and Peters2003; Gondim et al. Reference Gondim, Meyer, Peters, Rezende-Gondim, Vrhovec, Pantchev, Bauer, Conraths and Schares2015). In this review, serologic cross-reactivity is reviewed in detail among infections caused by T. gondii, Hammondia spp., Neospora spp., Sarcocystis spp. and B. besnoiti. Special emphasis is put on serologic cross-reactivity among animals infected with N. caninum and related pathogens. Further consideration is given to the discovery and production of species-specific and stage-specific antigens, which promise to improve diagnostic specificity and may enable discrimination between different modes of parasite acquisition.

SEROLOGY FOR T. GONDII AND CROSS-REACTIVITY WITH RELATED PATHOGENS

Toxoplasma gondii vs H. hammondi

During the first decades after T. gondii was discovered, several scientists have attempted to develop serologic tests with high sensitivity and specificity to diagnose T. gondii infection, as well as to understand the antigenic composition of the parasite. The development and improvement of serological tests, such as the Sabin–Feldman dye test (DT) (Sabin and Feldman, Reference Sabin and Feldman1948; Beverley and Beattie, Reference Beverley and Beattie1952), direct agglutination test (Fulton and Turk, Reference Fulton and Turk1959; Desmonts and Remington, Reference Desmonts and Remington1980), complement fixation test (CFT) (Sabin, Reference Sabin1949), enzyme-linked immunosorbent assay (ELISA) (Walls et al. Reference Walls, Bullock and English1977), immunofluorescence antibody test (IFAT) (Kelen et al. Reference Kelen, Ayllon-Leindl and Labzoffsky1962), indirect haemagglutination test (IHA) (Lunde and Jacobs, Reference Lunde and Jacobs1958) and Western blot (WB) (Araujo et al. Reference Araujo, Dubey and Remington1984) favoured a great advance in the study of toxoplasmosis.

Cross-immunity studies between T. gondii and H. hammondi

Mice and hamsters that were experimentally infected with H. hammondi (CR-4 strain) oocysts developed immunity and did not die after challenged with lethal doses of oocysts from a mouse-virulent T. gondii strain (M-7741 strain) (Frenkel and Dubey, Reference Frenkel and Dubey1975). In contrast, cats that were experimentally infected with H. hammondi and shed oocysts were not immunized against excretion of T. gondii oocysts (Frenkel and Dubey, Reference Frenkel and Dubey1975). An additional study approached cross-immunity between T. gondii and H. hammondi, by using six H. hammondi strains in an infection model of mice and hamsters (Christie and Dubey, Reference Christie and Dubey1977). The authors observed that 103 of 108 mice that were orally inoculated with H. hammondi oocysts survived a lethal challenge dose (105 oocysts) of T. gondii (strain M-7741). The H. hammondi-inoculated hamsters also developed immunity against a lethal dose of T. gondii oocysts, but this immunity was variable depending on the H. hammondi strain. The two most immunogenic H. hammondi strains conferred protection to fatal toxoplasmosis in 100 and 83% of the hamsters, respectively, after challenging with T. gondii oocysts (Christie and Dubey, Reference Christie and Dubey1977).

Immunization of goats with H. hammondi had a protective effect against abortion induced by T. gondii; however, the immunization did not prevent transplacental transmission of T. gondii in pregnant does (Munday and Dubey, Reference Munday and Dubey1988). Partial immunity against toxoplasmosis was also obtained in Tamar wallabies (Macropus eugenii), that were orally infected with 1 × 105 oocysts of H. hammondi (Reddacliff et al. Reference Reddacliff, Parker, Dubey, Nicholls, Johnson and Cooper1993).

Serologic cross-reactivity between T. gondii and H. hammondi

When H. hammondi was first described, some rodent species experimentally infected with this parasite developed cross-reacting antibodies against T. gondii antigens in the DT (Frenkel and Dubey, Reference Frenkel and Dubey1975). Further studies were carried out and confirmed that serologic cross-reactivity between T. gondii and H. hammondi occurred with sera from other animals, besides rodents. Weiland et al. (Reference Weiland, Rommel and von Seyerl1979) investigated cross-reactivity between T. gondii and H. hammondi in four animal species (120 mice, six dogs, six rabbits and six pigs) by using five serological tests (DT, CFT, ELISA, IFAT and IHA). Half of the animals were orally inoculated with T. gondii oocysts and the other half received H. hammondi oocysts by the same route. Sera from H. hammondi-infected mice reacted with T. gondii antigens in three tests (DT, ELISA and CFT). Sera from dogs infected with H. hammondi recognized T. gondii antigens by DT and ELISA. Sera from rabbits exhibited cross-reaction between the two parasites by ELISA. The sera of pigs infected with H. hammondi did not cross-react with T. gondii in any of the five serological tests. In this study, the IFAT was considered the most Toxoplasma-specific method. During the course of infection, the animals infected with T. gondii presented higher titres in the tests when compared with those infected with H. hammondi (Weiland et al. Reference Weiland, Rommel and von Seyerl1979). Munday and Dubey (Reference Munday and Dubey1986) observed that sheep that were inoculated with H. hammondi oocysts presented cross-reactivity with T. gondii antigen by IFAT. Before infection with H. hammondi, the sheep had no detectable antibodies to T. gondii. After oral inoculation with H. hammondi oocysts, the animals presented antibody titres of 1:16 to T. gondii by IFAT. Goats infected with H. hammondi were shown to produce antibodies against T. gondii tested by DT, with titres up to 1:64 (Dubey, Reference Dubey1981).

The antigenic similarity between T. gondii and H. hammondi was investigated using sera from experimentally infected mice (Araujo et al. Reference Araujo, Dubey and Remington1984). The authors employed T. gondii tachyzoites (RH strain) for two antigen detection procedures: (1) the antigen was labelled with 125I, immune-precipitated with sera from T. gondii or H. hammondi-infected mice, run by SDS–polyacrylamide gel electrophoresis (SDS–PAGE) and autoradiographed; (2) the antigen was lysed, separated by SDS–PAGE and tested by immunoblot. The sera from mice that were orally inoculated with H. hammondi oocysts recognized T. gondii antigens of MW 92·5 kDa (two antigens), 66·2 kDa, between 66·2 and 45 kDa, and between 31 and 21·5 kDa; compared with the T. gondii-positive reaction only a T. gondii antigen of 21·5 kDa was not recognized by the H. hammondi-positive mouse serum (Araujo et al. Reference Araujo, Dubey and Remington1984). This study confirmed that T. gondii and H. hammondi have similar antigenic components in their tachyzoites.

To facilitate scientific communication among research groups and laboratories, Sibley et al. (Reference Sibley, Pfefferkorn and Boothroyd1991) proposed a nomenclature system for naming mutants, genes and gene products of T. gondii, which was based on the system used for the yeast Saccharomyces cerevisiae. As an example, the surface protein (P30) was designated SAG1, which is the product of the SAG1 gene. However, as it was observed more recently that SAG1 genes belong to a superfamily of related genes, named SRS (SAG1-related sequences), which encode a superfamily of structurally related surface proteins from T. gondii, the name of SAG1 (P30) has been changed to SRS29B (Wasmuth et al. Reference Wasmuth, Pszenny, Haile, Jansen, Gast, Sher, Boyle, Boulanger, Parkinson and Grigg2012).

Riahi et al. (Reference Riahi, Bouteille and Darde1998) studied the antigenic similarity of T. gondii and H. hammondi employing five monoclonal antibodies (MAbs) against T. gondii surface antigens and a polyclonal mouse serum to H. hammondi. In order to produce enough H. hammondi antigen, the authors used an in vitro model that allows the production of H. hammondi cysts up to 3 months in cell culture (Riahi et al. Reference Riahi, Darde, Bouteille, Leboutet and Pestre-Alexandre1995). The cyst formation, confirmed by ultrastructural characteristics of the organism, started from 6 days after sporozoites were inoculated into feline kidney cells (CRFK). At 4 days of infection, the authors assumed that the multiplying H. hammondi zoites were tachyzoites (Riahi et al. Reference Riahi, Bouteille and Darde1998).

Tachyzoite antigens from T. gondii and H. hammondi were tested by IFAT and WB. By combining the two serologic techniques (IFAT and WB), five T. gondii antigens (MW of 30, 32, 35, 66 and 90 kDa) were recognized using polyclonal anti-H. hammondi serum. An interesting finding obtained by Riahi et al. (Reference Riahi, Bouteille and Darde1998) was the recognition of the SAG1 (SRS29B) antigen by the anti-H. hammondi serum, as this protein is a major antigen of T. gondii (Burg et al. Reference Burg, Perelman, Kasper, Ware and Boothroyd1988) and had been considered to be a specific marker for the parasite (Mineo et al. Reference Mineo, McLeod, Mack, Smith, Khan, Ely and Kasper1993). Despite the antigenic similarity between T. gondii and H. hammondi, MAbs targeted against H. hammondi antigens were produced, and five of them did not cross-react with T. gondii antigens (Riahi et al. Reference Riahi, Leboutet, Labrousse, Bouteille and Darde2000). These findings are promising for the characterization of H. hammondi-specific antigens or epitopes, which could enable development of serologic tests for this parasite that would not cross-react with T. gondii.

The genome of a German strain of H. hammondi was sequenced and the genomic synteny between this parasite and T. gondii was higher than 95% (Walzer et al. Reference Walzer, Adomako-Ankomah, Dam, Herrmann, Schares, Dubey and Boyle2013). It was found that orthologues of key T. gondii mouse virulence genes are functionally conserved in H. hammondi, but these data were not enough to explain the phenotypic differences observed between both parasites (Walzer et al. Reference Walzer, Adomako-Ankomah, Dam, Herrmann, Schares, Dubey and Boyle2013). In a recent work, the genomes of 62 strains of T. gondii were compared with those from H. hammondi, N. caninum and Sarcocystis neurona (Lorenzi et al. Reference Lorenzi, Khan, Behnke, Namasivayam, Swapna, Hadjithomas, Karamycheva, Pinney, Brunk, Ajioka, Ajzenberg, Boothroyd, Boyle, Darde, Diaz-Miranda, Dubey, Fritz, Gennari, Gregory, Kim, Saeij, Su, White, Zhu, Howe, Rosenthal, Grigg, Parkinson, Liu, Kissinger, Roos and David Sibley2016); these authors demonstrated that T. gondii possesses an expansion of parasite-specific secretory pathogenesis determinants (SPDs) when compared with the three latter parasites. The SPDs encompass genes encoding secretory proteins from micronemes, dense granules, rhoptries and surface antigens, whose expansion and diversity are associated with the patterns of transmission, host range and pathogenicity of T. gondii (Lorenzi et al. Reference Lorenzi, Khan, Behnke, Namasivayam, Swapna, Hadjithomas, Karamycheva, Pinney, Brunk, Ajioka, Ajzenberg, Boothroyd, Boyle, Darde, Diaz-Miranda, Dubey, Fritz, Gennari, Gregory, Kim, Saeij, Su, White, Zhu, Howe, Rosenthal, Grigg, Parkinson, Liu, Kissinger, Roos and David Sibley2016). It was reported that T. gondii shares a high number of orthologues with H. hammondi (7095) and N. caninum (6308) (Lorenzi et al. Reference Lorenzi, Khan, Behnke, Namasivayam, Swapna, Hadjithomas, Karamycheva, Pinney, Brunk, Ajioka, Ajzenberg, Boothroyd, Boyle, Darde, Diaz-Miranda, Dubey, Fritz, Gennari, Gregory, Kim, Saeij, Su, White, Zhu, Howe, Rosenthal, Grigg, Parkinson, Liu, Kissinger, Roos and David Sibley2016).

The search for more practical and efficient methods to detect specific antibodies against T. gondii pushed the establishment of tests based on antigenic fractions, which are gradually replacing traditional tests based on whole organisms (agglutination, DT and IFAT) or total extracts of parasite antigens. Recognized immunodominant antigens of T. gondii, including the tachyzoite surface antigens SAG1 (p30) (Kasper, Reference Kasper1987; Mineo et al. Reference Mineo, McLeod, Mack, Smith, Khan, Ely and Kasper1993), SAG2 (p22) (Prince et al. Reference Prince, Auer, Huskinson, Parmley, Araujo and Remington1990), SAG3 (P43) (Cesbron-Delauw et al. Reference Cesbron-Delauw, Tomavo, Beauchamps, Fourmaux, Camus, Capron and Dubremetz1994), SAG4 (p18) (Odberg-Ferragut et al. Reference Odberg-Ferragut, Soete, Engels, Samyn, Loyens, Van Beeumen, Camus and Dubremetz1996) and several other proteins from dense granules, rhoptries and micronemes are being produced as recombinant proteins (reviewed by Holec-Gasior, Reference Holec-Gasior2013).

So far, it is not known whether humans may be infected with H. hammondi, and in case it happens, the possibility of serologic cross-reactivity with T. gondii antigens cannot be ruled out. Cats seem to shed T. gondii and H. hammondi in similar proportions as reported in a recent study from Germany (Schares et al. Reference Schares, Ziller, Herrmann, Globokar, Pantchev and Conraths2016), and humans and animals of many species are potentially exposed to H. hammondi. The establishment of H. hammondi infections in most animal species has not been rigorously investigated; however, the life cycle of H. hammondi seems to lack avian hosts (Dubey and Sreekumar, Reference Dubey and Sreekumar2003).

Toxoplasma gondii vs N. caninum

The serologic differentiation between T. gondii and H. hammondi infections has clinical and epidemiological relevance. Since H. hammondi is not known to induce disease in animals or humans, the major concern about the serologic differentiation of these parasites seems to be to avoid T. gondii false-positive results in individuals potentially infected with H. hammondi. The identification of N. caninum (Bjerkas et al. Reference Bjerkas, Mohn and Presthus1984; Dubey et al. Reference Dubey, Carpenter, Speer, Topper and Uggla1988a ) imposed a new challenge for the scientific community, because this non-zoonotic Toxoplasmatinae parasite is able to infect and cause disease in some mammalian animals that are also susceptible to T. gondii infection (Buxton, Reference Buxton1998). The comparison of the whole-genome sequences from T. gondii, H. hammondi and N. caninum showed that these three related tissue-cyst-forming coccidian parasites have a similar total genome size of 62–65 Mb, and many similar orthologous groups of proteins involved in key biological functions (Lorenzi et al. Reference Lorenzi, Khan, Behnke, Namasivayam, Swapna, Hadjithomas, Karamycheva, Pinney, Brunk, Ajioka, Ajzenberg, Boothroyd, Boyle, Darde, Diaz-Miranda, Dubey, Fritz, Gennari, Gregory, Kim, Saeij, Su, White, Zhu, Howe, Rosenthal, Grigg, Parkinson, Liu, Kissinger, Roos and David Sibley2016).

Neospora caninum can be maintained as tachyzoites in cell culture (Dubey et al. Reference Dubey, Hattel, Lindsay and Topper1988b ), which has enabled the development of a range of serological tests and antibodies against the parasite (Björkman and Uggla, Reference Björkman and Uggla1999). Neosporosis research was accelerated by the prior accumulation of knowledge about and procedures for T. gondii.

The nomenclature system adopted for mutants, genes and gene products of T. gondii (Sibley et al. Reference Sibley, Pfefferkorn and Boothroyd1991) was proposed for N. caninum (Howe and Sibley, Reference Howe and Sibley1999). In the comparison of T. gondii and N. caninum homologous antigens (e.g. SAG1), the use of a Tg or Nc prefix was recommended to distinguish these gene products (e.g. TgSAG1 and NcSAG1) (Howe and Sibley, Reference Howe and Sibley1999). Also, a cluster of cell-surface genes was found in N. caninum, as described for T. gondii, and these gene products were re-named as members of the SRS superfamily (Wasmuth et al. Reference Wasmuth, Pszenny, Haile, Jansen, Gast, Sher, Boyle, Boulanger, Parkinson and Grigg2012).

Cross-immunity studies between T. gondii and N. caninum

Cross-protection of mice immunized with N. caninum and challenged with T. gondii is probably T. gondii strain- and dose-dependent. In one study, mice were immunized with N. caninum and died after challenging with the highly virulent RH strain of T. gondii (Lindsay et al. Reference Lindsay, Blagburn and Dubey1990). When mice were immunized with N. caninum and challenged with a less-virulent T. gondii strain (PLK, a clone from the ME49 strain), the animals had 100% protection against death; immunization with a higher dose of N. caninum tachyzoites improved protection against T. gondii-induced disease (Kasper and Khan, Reference Kasper and Khan1998). Similar levels of protection were observed when mice were immunized with N. caninum tachyzoites and then challenged with oocysts of T. gondii from a moderately virulent strain (Lindsay et al. Reference Lindsay, Lenz, Dykstra, Blagburn and Dubey1998). In another study, pregnant sheep were immunized with a T. gondii sheep vaccine (Toxovax®, Intervet, Cambridge, UK) and challenged with a high dose of N. caninum tachyzoites (107 tachyzoites per animal) at 90 days of gestation (Innes et al. Reference Innes, Lundén, Esteban, Marks, Maley, Wright, Rae, Harkins, Vermeulen, McKendrick and Buxton2001). No protection against fetal death was observed. The authors speculated that if the sheep were challenged with a lower dose of N. caninum tachyzoites, there perhaps would be some degree of cross-immunity (Innes et al. Reference Innes, Lundén, Esteban, Marks, Maley, Wright, Rae, Harkins, Vermeulen, McKendrick and Buxton2001). The confirmation of cross-immunity between T. gondii and N. caninum in some studies suggests that these parasites share antigens which may also be involved in serologic cross-reactivity.

Serologic cross-reactivity between T. gondii and N. caninum

In the initial observation of N. caninum in dogs, sera from five animals that were naturally infected with the parasite tested negative for T. gondii by the DT (Bjerkas et al. Reference Bjerkas, Mohn and Presthus1984). In addition, dogs that were naturally or experimentally infected with N. caninum did not cross-react to T. gondii by IFAT, when using 1:50 dilutions as cutoff (Dubey et al. Reference Dubey, Hattel, Lindsay and Topper1988b ). Accordingly, the same or higher dilution cutoffs by IFAT have been found to be appropriate to avoid cross-reactivity between N. caninum and T. gondii in serum samples from different hosts (Lobato et al. Reference Lobato, Silva, Mineo, Amaral, Segundo, Costa-Cruz, Ferreira, Borges and Mineo2006; Silva et al. Reference Silva, Lobato, Mineo and Mineo2007; Benetti et al. Reference Benetti, Schein, dos Santos, Toniollo, da Costa, Mineo, Lobato, de Oliveira Silva and Gennari2009). Apical reactions, i.e. reactions limited to the apex of the parasite were regarded as non-specific in N. caninum IFAT. Cross-reactivity with apical antigens is potentially caused by the high conservation of antigens in the apical organelles of a variety of Apicomplexan parasites, including T. gondii. In contrast, a complete peripheral fluorescence of the parasite was considered as a positive response (Pare et al. Reference Pare, Hietala and Thurmond1995b ).

Cross-reactive antigens between N. caninum and T. gondii have been observed by immunohistochemistry using tissues of naturally- or experimentally infected animals. A rabbit anti-N. caninum serum cross-reacted with T. gondii in tissue sections from mice (Barr et al. Reference Barr, Conrad, Dubey and Anderson1991). A bradyzoite antigen from T. gondii, designated as BAG1 (synonymous to BAG5) (Weiss et al. Reference Weiss, LaPlace, Tanowitz and Wittner1992; Parmley et al. Reference Parmley, Weiss and Yang1995), was used to produce hyperimmune serum in rabbit, which cross-reacted with bradyzoites of N. caninum (McAllister et al. Reference McAllister, Parmley, Weiss, Welch and McGuire1996). Polyclonal sera against T. gondii tachyzoites induced strong cross-reactivity with N. caninum tachyzoites by immunohistochemistry (Sundermann et al. Reference Sundermann, Estridge, Branton, Bridgman and Lindsay1997). The use of MAbs specific to T. gondii (Sundermann et al. Reference Sundermann, Estridge, Branton, Bridgman and Lindsay1997) or a combination of two MAbs specific to N. caninum (Uzêda et al. Reference Uzêda, Schares, Ortega-Mora, Madruga, Aguado-Martinez, Corbellini, Driemeier and Gondim2013), were demonstrated to avoid immunohistological cross-reactivity between these protozoa.

Although species-specific MAbs have been developed, serologic cross-reactions between T. gondii and N. caninum have been shown to occur also by means of MAbs. Sundermann et al. (Reference Sundermann, Estridge, Branton, Bridgman and Lindsay1997) generated MAbs against T. gondii tachyzoites and observed among 26 MAbs tested by IFAT, five antibodies that cross-reacted with N. caninum tachyzoites. Kobayashi et al. (Reference Kobayashi, Narabu, Yanai, Hatano, Ito, Imai and Ike2013) cloned the NcBAG1 gene and generated MAbs against its recombinant protein, which recognized TgBAG1. Liao et al. (Reference Liao, Xuan, Huang, Shirafuji, Fukumoto, Hirata, Suzuki and Fujisaki2005a ) produced 384 MAbs against N. caninum by immunizing mice with N. caninum tachyzoites; 10 of the 384 MAbs were also reactive against T. gondii tachyzoites. Similarly, Sohn et al. (Reference Sohn, Cheng, Drummond, Peng, Vermont, Xia, Cheng, Wastling and Bradley2011) developed 46 MAbs using a mouse immunized with a mixed fraction of N. caninum organelles and some of the MAbs cross-reacted with T. gondii. MAbs generated to oocyst antigens of T. gondii cross-reacted by immunofluorescence with the sporocyst wall (Dumetre and Darde, Reference Dumetre and Darde2007) and tissue the cyst wall of N. caninum (Gondim et al. Reference Gondim, Wolf, Vrhovec, Pantchev, Bauer, Langenmayer, Bohne, Teifke, Dubey, Conraths and Schares2016). These findings show that cross-reactive antigens between T. gondii and N. caninum are present in tachyzoites, tissue cysts and oocysts of these parasites.

Affinity-purified antibodies raised against a 38 kDa microneme-associated protein of N. caninum (NcMIC3) also recognized a 45 kDa protein in tachyzoite extracts of T. gondii (Sonda et al. Reference Sonda, Fuchs, Gottstein and Hemphill2000). MAbs raised against T. gondii reacted with N. caninum tachyzoites by IFAT, but only at low titres (10–40) (Latif and Jakubek, Reference Latif and Jakubek2008). A number of reports demonstrated the usefulness of MAbs against T. gondii, which do not cross-react with N. caninum (Baszler et al. Reference Baszler, Adams, Vander-Schalie, Mathison and Kostovic2001; Uchida et al. Reference Uchida, Ike, Kurotaki, Ito and Imai2004; Srinivasan et al. Reference Srinivasan, Baszler, Vonlaufen, Leepin, Sanderson, Wastling and Hemphill2006; Cunha-Junior et al. Reference Cunha-Junior, Silva, Silva, Souza, Souza, Prudencio, Pirovani, Cezar, Barbosa, Goulart and Mineo2010).

Certain surface antigens of N. caninum, although not identical to those from T. gondii, were homologous to them (Hemphill et al. Reference Hemphill, Felleisen, Connolly, Gottstein, Hentrich and Muller1997; Howe et al. Reference Howe, Crawford, Lindsay and Sibley1998; Howe and Sibley, Reference Howe and Sibley1999). Two surface antigens of N. caninum, similar to SAG1 and SRS2 from T. gondii, were called NcSAG1 and NcSRS2. MAbs against NcSAG1 (6C11, Ncmab-4) did not cross react with T. gondii (Björkman and Hemphill, Reference Björkman and Hemphill1998; Howe et al. Reference Howe, Crawford, Lindsay and Sibley1998). Evaluation of several MAbs against NcSRS2 (5H5, Ncmab-10, 5·2·15) revealed no cross-reactions with T. gondii antigens in immunoblot (Björkman and Hemphill, Reference Björkman and Hemphill1998; Howe et al. Reference Howe, Crawford, Lindsay and Sibley1998; Schares et al. Reference Schares, Dubremetz, Dubey, Barwald, Loyens and Conraths1999a ).

Antigens of N. caninum tested by WB using monoclonal or polyclonal antibodies, resulted in the identification of a limited number of specific immunodominant bands (often referred to as ‘immunodominant antigens’) and other less reactive bands (Table 1). The comparison of these antigens based on their molecular weights is difficult, as differences on the SDS-PAGE conditions, especially the use of reducing or non-reducing conditions, cause variation in the estimated molecular weights. Most likely, some of these immunodominant bands observed in WBs may represent more than a single protein.

Table 1. Immunodominant bands recognized by Neospora caninum-infected or immunized animals in tachyzoite antigen

a Cross-reacting immunodominant antigen bands underlined.

In WB, non-reduced antigens exhibit much stronger reactivity than reduced antigens (Barta and Dubey, Reference Barta and Dubey1992) which is a clear indication that most of the epitopes recognized on these antigens are conformational epitopes. Under non-reduced conditions a large number of researchers observed mainly four areas with specific immunodominant bands in N. caninum tachyzoite antigen: 14–19 kDa, 29–32 kDa, 30–36 kDa, and 36–40 kDA. However, other areas with major bands of reactions were also observed with non-reduced antigens, but differed widely between studies (Table 1).

Sera from animals immunized with recombinant forms of the major N. caninum antigens NcSAG1 and NcSRS2 provided evidence that these antigens are among those recognized in the range 29–32 kDa and 36–40 kDA bands (Howe et al. Reference Howe, Crawford, Lindsay and Sibley1998) (Table 2).

Table 2. Neospora caninum-recombinant antigens and cross-reactions tested against Toxoplasma gondii and related protozoan parasites

Under reduced conditions there is a dominant band between 17–19 kDa which most likely represent reactions against NcGRA7 (Alvarez-Garcia et al. Reference Alvarez-Garcia, Pitarch, Zaballos, Fernandez-Garcia, Gil, Gomez-Bautista, Aguado-Martinez and Ortega-Mora2007) and other antigens (Table 2). However, as demonstrated by MAbs (4·7·12; Ncmab-7) in combination with immunoprecipitation, surface biotinylation and immuno-electron microscopy, a surface antigen might also be among those migrating in WB at 17–19 kDa under reduced conditions (Björkman and Hemphill, Reference Björkman and Hemphill1998; Schares et al. Reference Schares, Dubremetz, Dubey, Barwald, Loyens and Conraths1999a ). Further immunodominant banding areas are at 34–36 and 37–46 kDa, eventually also representing reactions to NcSAG1, NcGRA6, NcGRA7 and NcSRS2 (Table 2). When tested with polyclonal antibodies against T. gondii, only minor reactions were observed with antigen bands regarded as specific for N. caninum in WB (Barta and Dubey, Reference Barta and Dubey1992; Björkman et al. Reference Björkman, Lunden, Holmdahl, Barber, Trees and Uggla1994, Reference Björkman, Holmdahl and Uggla1997).

For the diagnosis of T. gondii infection in veterinary investigations, the use of recombinant and synthetic antigens, developed using novel molecular techniques, have expanded diagnostic options as alternatives to native antigens directly isolated from cultivated parasites. For diagnosis of T. gondii infection in cats, sheep and pigs, some species-specific ELISAs are available that have performed well when compared with previous reference serological techniques, as reviewed by Wyrosdick and Schaefer (Reference Wyrosdick and Schaefer2015).

ELISAs for N. caninum antibodies in sera from dogs and cattle have been developed in several studies (Table 3). Conventional ELISAs using crude soluble antigen showed higher levels of serologic cross-reactivity to T. gondii when compared with IFAT (Björkman et al. Reference Björkman, Lunden, Holmdahl, Barber, Trees and Uggla1994; Silva et al. Reference Silva, Lobato, Mineo and Mineo2007). Serologic cross-reactivity with T. gondii was also observed when polyclonal mouse and cat sera were tested by a N. caninum ELISA using crude antigen (Nishikawa et al. Reference Nishikawa, Claveria, Fujisaki and Nagasawa2002). In contrast, the same mouse and cat sera did not cross-react by an ELISA based on N. caninum recombinant antigen (NcSRS2) (Nishikawa et al. Reference Nishikawa, Claveria, Fujisaki and Nagasawa2002). ELISAs prepared with N. caninum tachyzoite antigen associated with immunostimulating complexes (ISCOM), and using MAbs as secondary antibodies, presented better specificity than conventional ELISAs (Björkman et al. Reference Björkman, Lunden, Holmdahl, Barber, Trees and Uggla1994, Reference Björkman, Holmdahl and Uggla1997). The ISCOM particles have affinity for surface proteins, which minimizes interference by internal non-specific antigens (Björkman et al. Reference Björkman, Lunden, Holmdahl, Barber, Trees and Uggla1994). Moreover, none of the MAbs developed against N. caninum ISCOM incorporated antigens (including also Ncmab-4, and Ncmab-10 mentioned above) cross-reacted with T. gondii (Björkman and Lunden, Reference Björkman and Lunden1998). An ELISA based on immuno-affinity-purified native NcSRS2 showed no significant cross-reactions when tested with sera from cattle experimentally infected with a variety of protozoan parasites including also ten cattle infected with T. gondii (Schares et al. Reference Schares, Rauser, Sondgen, Rehberg, Barwald, Dubey, Edelhofer and Conraths2000). In addition, the TgSAG2A molecule has been demonstrated to be specific to T. gondii, considering that no cross-reactivity has been shown with N. caninum when using recombinant protein or even mimotopes derived from this molecular marker, as characterized by A4D12 MAb (Bela et al. Reference Bela, Oliveira Silva, Cunha-Junior, Pirovani, Chaves-Borges, Reis de Carvalho, Carrijo de Oliveira and Mineo2008; Carvalho et al. Reference Carvalho, Silva, Cunha-Junior, Souza, Oliveira, Bela, Faria, Lopes and Mineo2008; Cunha-Junior et al. Reference Cunha-Junior, Silva, Silva, Souza, Souza, Prudencio, Pirovani, Cezar, Barbosa, Goulart and Mineo2010; Santana et al. Reference Santana, Silva, Vaz, Pirovani, Barros, Lemos, Dietze, Mineo and Cunha-Junior2012; Macedo et al. Reference Macedo, Cunha, Cardoso, Silva, Santiago, Silva, Pirovani, Silva, Mineo and Mineo2013).

Table 3. Cross-reactions tested for Neospora caninum in published in-house ELISAs

a Cross-reactions observed in serum dilutions lower than the cutoff.

b Rabbit sera against T. gondii and S. cruzi do not react in WB with ISCOM antigen.

c MAbs against ISCOM antigens do not recognize T. gondii in WB.

d Mouse serum immunized with ISCOM antigen does not recognize T. gondii.

e Some sera showed elevated levels of cross-reactions in WB.

Nowadays it is becoming clear that there is a need to characterize new molecular markers that are species-specific for T. gondii and N. caninum for the development of new diagnostic tools (Zhang et al. Reference Zhang, Lee, Yu, Kawano, Huang, Liao, Kawase, Zhang, Zhou, Fujisaki, Nishikawa and Xuan2011; Regidor-Cerrillo et al. Reference Regidor-Cerrillo, Garcia-Lunar, Pastor-Fernandez, Alvarez-Garcia, Collantes-Fernandez, Gomez-Bautista and Ortega-Mora2015). In this context, the identification of cross-reactive and species-specific antigens between N. caninum and T. gondii tachyzoites is mandatory and the proteomics approach constitutes an appropriate strategy for this purpose (Zhang et al. Reference Zhang, Lee, Yu, Kawano, Huang, Liao, Kawase, Zhang, Zhou, Fujisaki, Nishikawa and Xuan2011). These authors demonstrated the usefulness of proteomics to immuno-screen for cross-reactive or species-specific antigens from both parasites. Moreover, they showed that there was significant homology in the antigenic proteome profiles between the two parasites (Zhang et al. Reference Zhang, Lee, Yu, Kawano, Huang, Liao, Kawase, Zhang, Zhou, Fujisaki, Nishikawa and Xuan2011). Taking together, these findings shed light on the process to design new diagnostic tools in order to avoid cross-reactivity between N. caninum and T. gondii diagnostic tests.

The characterization of cross-reactive antigens between T. gondii and N. caninum has been achieved in some studies. An NTPase identified in N. caninum tachyzoites was antigenically cross-reactive to the NTPases of T. gondii (Asai et al. Reference Asai, Howe, Nakajima, Nozaki, Takeuchi and Sibley1998). Protein disulphide isomerase (PDI), heat-shock protein 70 (HSP70) and ribosomal protein P1 (RP1), were identified as cross-reactive antigens between the two parasites even when using MAbs, due to the high degree of homology among these parasite components (Liao et al. Reference Liao, Xuan, Huang, Shirafuji, Fukumoto, Hirata, Suzuki and Fujisaki2005a ). Zhang et al. (Reference Zhang, Compaore, Lee, Liao, Zhang, Sugimoto, Fujisaki, Nishikawa and Xuan2007a ) demonstrated that antibodies raised against the apical membrane antigen 1 of T. gondii (TgAMA 1) also recognize recombinant NcAMA 1. The ribosomal phosphoprotein (P0) was shown to be a cross-reactive antigen between T. gondii and N. caninum (Zhang et al. Reference Zhang, Lee, Liao, Compaore, Zhang, Kawase, Fujisaki, Sugimoto, Nishikawa and Xuan2007b ); antibodies raised against rNcPO inhibited the growth of both T. gondii and N. caninum tachyzoites. A protease with 42 kDa was localized in the rhoptry of T. gondii by means of a MAb; this MAb also reacted to a 42 kDa protein in N. caninum, which was also localized in the rhoptry of this parasite (Ahn et al. Reference Ahn, Song, Son, Shin and Nam2001).

The genome of N. caninum (NC-Liverpool strain) was compared with the available genome of the ME-49 strain of T. gondii (Reid et al. Reference Reid, Vermont, Cotton, Harris, Hill-Cawthorne, Konen-Waisman, Latham, Mourier, Norton, Quail, Sanders, Shanmugam, Sohal, Wasmuth, Brunk, Grigg, Howard, Parkinson, Roos, Trees, Berriman, Pain and Wastling2012). The authors found a high synteny between the two genomes and pointed out that most divergences occurred within the SRS antigens. Transcriptome analysis suggested that N. caninum uses fewer SRS antigens than T. gondii (Reid et al. Reference Reid, Vermont, Cotton, Harris, Hill-Cawthorne, Konen-Waisman, Latham, Mourier, Norton, Quail, Sanders, Shanmugam, Sohal, Wasmuth, Brunk, Grigg, Howard, Parkinson, Roos, Trees, Berriman, Pain and Wastling2012). Therefore, selecting those species-specific parasitic surface antigens for the establishment of serologic tests, such as SRSs, may favour the specificity of these tests.

Serological tests for N. caninum and cross-reactivity with Sarcocystis spp., B. besnoiti, N. hughesi and Hammondia spp.

Sera from Sarcocystis spp.-infected cattle have been shown to cross-react with several N. caninum antigens by WB (Baszler et al. Reference Baszler, Knowles, Dubey, Gay, Mathison and McElwain1996). However, antibodies against Sarcocystis spp. did not cross-react with N. caninum-immunodominant antigens (19, 29, 30 and 37 kDa) (Bjerkas et al. Reference Bjerkas, Jenkins and Dubey1994).

Sera from calves that were experimentally infected with Sarcocystis spp. tested positive by a conventional ELISA using crude N. caninum antigen (Dubey et al. Reference Dubey, Lindsay, Adams, Gay, Baszler, Blagburn and Thulliez1996); the same sera tested negative by N. caninum IFAT. In contrast, positive sera against several Sarcocystis spp. (S. cruzi, S. hirsuta, S. hominis and S. neurona) did not result in positive reactions in ELISAs based on N. caninum-selected antigens (ISCOM, whole-fixed tachyzoites, affinity-purified and recombinant) (Björkman et al. Reference Björkman, Lunden, Holmdahl, Barber, Trees and Uggla1994; Baszler et al. Reference Baszler, Knowles, Dubey, Gay, Mathison and McElwain1996, Reference Baszler, Adams, Vander-Schalie, Mathison and Kostovic2001; Lally et al. Reference Lally, Jenkins and Dubey1996; Schares et al. Reference Schares, Rauser, Sondgen, Rehberg, Barwald, Dubey, Edelhofer and Conraths2000; Howe et al. Reference Howe, Tang, Conrad, Sverlow, Dubey and Sibley2002). Serologic cross-reactivity between infections caused by N. caninum and Sarcocystis spp. seems to be neglegible when N. caninum-specific antigens are employed (Table 3).

Besnoitia besnoiti and N. caninum have cattle as their major hosts and may co-infect a high proportion of animals in regions where these parasites are endemic (Jacquiet et al. Reference Jacquiet, Lienard and Franc2010). Serologic tests such as indirect ELISA and IFAT had been developed over several decades for B. besnoiti antibodies (Frank et al. Reference Frank, Klinger and Pipano1970; Neuman, Reference Neuman1972; Janitschke et al. Reference Janitschke, De Vos and Bigalke1984; Shkap et al. Reference Shkap, Ungar-Waron, Pipano and Greenblatt1984), but at that time, the closely related parasite N. caninum was unknown, so the specificity of those tests could not have been ascertained. Later, it was shown that sera from N. caninum-positive cattle and gerbils recognized B. besnoiti antigens by IFAT when a less stringent cutoff (1:64) was used (Shkap et al. Reference Shkap, Reske, Pipano, Fish and Baszler2002); the authors also observed that these animal sera reacted against two bands of B. besnoiti antigens under reducing conditions by WB. In another study, a more stringent cutoff (1:200) for B. besnoiti IFAT did not show cross-reactions with sera from N. caninum-infected animals, whereas serum dilutions of 1:100 showed some level of cross-reactivity (Schares et al. Reference Schares, Basso, Majzoub, Rostaher, Scharr, Langenmayer, Selmair, Dubey, Cortes, Conraths and Gollnick2010).

Besnoitia besnoiti WBs and indirect ELISAs were developed for detection of antibodies in cattle and were tested for cross-reactivity with sera from animals infected with N. caninum and T. gondii (Cortes et al. Reference Cortes, Nunes, Reis, Staubli, Vidal, Sager, Leitao and Gottstein2006; Fernandez-Garcia et al. Reference Fernandez-Garcia, Alvarez-Garcia, Risco-Castillo, Aguado-Martinez, Marcen, Rojo-Montejo, Castillo and Ortega-Mora2010; Schares et al. Reference Schares, Basso, Majzoub, Rostaher, Scharr, Langenmayer, Selmair, Dubey, Cortes, Conraths, Haupt, Purro, Raeber, Buholzer and Gollnick2011). Cross-reactivity with N. caninum was observed in the tested ELISAs and WBs, especially with animals exhibiting high antibody titres for N. caninum. A novel ELISA for B. besnoiti was developed with affinity-purified antigens of confirmed relevance, mostly localized on the surface of tachyzoites. This ELISA has shown a lower degree of cross-reactivity with N. caninum (Schares et al. Reference Schares, Langenmayer, Scharr, Minke, Maksimov, Maksimov, Schares, Barwald, Basso, Dubey, Conraths and Gollnick2013). A recent study demonstrated that cattle exhibiting high antibody levels to N. caninum and/or Sarcocystis spp. presented a higher number of false-positive reactions for B. besnoiti by an in-house ELISA (Garcia-Lunar et al. Reference Garcia-Lunar, More, Campero, Ortega-Mora and Alvarez-Garcia2015); thus, infection with Sarcocystis spp. and N. caninum may augment cross-reactions with B. besnoiti.

No serologic cross-reactivity has been observed between N. caninum and H. heydorni. A few serum samples from mice, dog and sheep that were infected with H. heydorni did not cross-react with N. caninum antigens by IFAT, ELISA or WB (Nishikawa et al. Reference Nishikawa, Claveria, Fujisaki and Nagasawa2002; Gondim et al. Reference Gondim, Meyer, Peters, Rezende-Gondim, Vrhovec, Pantchev, Bauer, Conraths and Schares2015). However, further studies using larger numbers of sera from H. heydorni-infected animals are necessary to confirm the absence of cross-reactivity between N. caninum and H. heydorni.

Neospora hughesi was proposed as a new species based on seven nucleotide differences in the internal transcribed spacer 1 (ITS1) of the rDNA, as well as on ultrastructural and antigenic differences when compared with N. caninum (Marsh et al. Reference Marsh, Barr, Packham and Conrad1998). The acceptance of N. hughesi as a new species was reinforced by differences observed in amino acid sequences of two surface antigens (SAG1 and SRS2) to those from N. caninum (Marsh et al. Reference Marsh, Howe, Wang, Barr, Cannon and Conrad1999). However, polyclonal serum from a N. caninum-infected rabbit recognized NcSAG1, NhSAG1, NcSRS2 and NhSRS2 by immunoblot (Marsh et al. Reference Marsh, Howe, Wang, Barr, Cannon and Conrad1999). Differences also have been found in gene sequences between the dense granule proteins GRA6 and GRA7 of N. caninum and N. hughesi, although polyclonal serum to N. caninum recognized GRA6 and GRA7 antigens from both N. caninum and N. hughesi by immunoblot (Walsh et al. Reference Walsh, Vemulapalli, Sriranganathan, Zajac, Jenkins and Lindsay2001).

An ELISA for N. hughesi antibodies was developed using a recombinant NhSAG1 as antigen (Hoane et al. Reference Hoane, Yeargan, Stamper, Saville, Morrow, Lindsay and Howe2005); animals infected with N. hughesi presented a higher antibody reactivity to rNhSAG1 than to rNcSAG1, but the test was not able to unambiguously differentiate infections caused by N. hughesi or N. caninum. In another study, pre- and post-infection sera from dog and cattle that were experimentally inoculated with N. caninum were tested simultaneously by IFAT using tachyzoites of N. caninum or N. hughesi (Gondim et al. Reference Gondim, Lindsay and McAllister2009); all sera that tested positive for N. caninum also reacted with N. hughesi tachyzoites, although the antibody titres for N. hughesi IFAT were slightly lower as compared with the IFAT for N. caninum. To date, infections caused by N. caninum and N. hughesi cannot be serologically discriminated. As horses may be infected by both N. caninum and N. hughesi (Marsh et al. Reference Marsh, Howe, Wang, Barr, Cannon and Conrad1999; Pitel et al. Reference Pitel, Romand, Pronost, Foucher, Gargala, Maillard, Thulliez, Collobert-Laugier, Tainturier, Fortier and Ballet2003; Veronesi et al. Reference Veronesi, Diaferia, Mandara, Marenzoni, Cittadini and Piergili Fioretti2008), a species-specific serologic test for equines is desired.

Serological tests based on chimeric antigens, synthetic peptides and stage-specific antigens

Chimeric antigens

Almost 30 years ago, the production of recombinant polypeptides derived from genes encoding T. gondii antigens revolutionized the search for more efficient serologic methods (Johnson et al. Reference Johnson, Illana, McDonald and Asai1989; Johnson and Illana, Reference Johnson and Illana1991). The development of ELISAs based on a mixture of recombinant antigens, rather than the use of a single recombinant protein, has been presumed to increase the sensitivity of the ELISA for human sera, while maintaining the desired specificity (Johnson et al. Reference Johnson, Roberts and Tenter1992; Aubert et al. Reference Aubert, Maine, Villena, Hunt, Howard, Sheu, Brojanac, Chovan, Nowlan and Pinon2000). ELISAs containing a mixture of recombinant antigens were also tested for antibodies against T. gondii in sheep and cats (Tenter et al. Reference Tenter, Vietmeyer and Johnson1992).

A chimeric antigen is the fusion of gene fragments constructed as a single gene and expressed to form a hybrid protein (Yang et al. Reference Yang, Chang and Chao2004). The use of chimeric antigens for T. gondii serology is promising. Chimeric proteins are usually larger than single recombinant antigens resulting in a better binding to microtitre plates. In addition, as a chimeric antigen preparation consists of a single antigen, it may be easier to standardize than mixtures of recombinant antigens (Beghetto et al. Reference Beghetto, Spadoni, Bruno, Buffolano and Gargano2006; Lau et al. Reference Lau, Thiruvengadam, Lee and Fong2011; Holec-Gasior et al. Reference Holec-Gasior, Ferra and Drapala2012a ).

Several chimeric antigens have been tested by WB or ELISA for the detection of human antibodies against T. gondii. Among the developed chimeric antigens tested by serology, are preparations including parts of well-characterized immunodominant proteins, such as SAG1, SAG2, MIC1, MIC2, MIC3, MAG1, M2AP, GRA1, GRA2, GRA3 and ROP1 (Beghetto et al. Reference Beghetto, Spadoni, Bruno, Buffolano and Gargano2006; Lau et al. Reference Lau, Thiruvengadam, Lee and Fong2011; Holec-Gasior et al. Reference Holec-Gasior, Ferra and Drapala2012a , Reference Holec-Gasior, Ferra, Drapala, Lautenbach and Kur b ; Ferra et al. Reference Ferra, Holec-Gasior and Kur2015a ). The standardization of a chimeric-antigen-based test for T. gondii antibodies depends on various factors, including an optimal selection of antigens and proper expression of all desired epitopes. In addition to humans, a recent paper reports the first trial of chimeric antigens employed for T. gondii serology in farm animals (horses, swine and sheep) (Ferra et al. Reference Ferra, Holec-Gasior and Kur2015b ); the authors validated their antigen with more than 400 sera and also included 15 sera, which were serologically positive for N. caninum but negative for T. gondii. It is interesting to note that each animal species responded differently to the chimeric-antigen preparations used in the ELISAs, but the SAG2–GRA1–ROP1L construct reached the best overall specificity and sensitivity for the three tested species (Ferra et al. Reference Ferra, Holec-Gasior and Kur2015b ). Despite progress in the development of chimeric antigens for T. gondii serology, in particular for humans, inadequate information is available about the serologic cross-reactivity potential of those tests with sera from animals infected with other Toxoplasmatinae parasites.

Synthetic peptides, serotyping and stage-specific antigens

The combination of molecular engineering and chemical synthesis of antigens has been applied for the development of serological techniques with improved sensitivity and specificity. Synthetic peptides representing several epitopes of numerous antigens have been used in microarray assays for serotyping of viral and bacterial diseases (Neuman de Vegvar et al. Reference Neuman de Vegvar, Amara, Steinman, Utz, Robinson and Robinson2003; Nahtman et al. Reference Nahtman, Jernberg, Mahdavifar, Zerweck, Schutkowski, Maeurer and Reilly2007).

In T. gondii infections, the humoral response has been demonstrated to be partially strain-specific. In one study, MAbs produced against SAG2A from naturally infected mice recognized the surface antigens encoded by the SAG2 allele of type I and III strains, but not of type II strains (Parmley et al. Reference Parmley, Gross, Sucharczuk, Windeck, Sgarlato and Remington1994). Another study identified a MAb showing differences in the recognition of type II and III strains (Bohne et al. Reference Bohne, Gross and Heesemann1993). Kong et al. (Reference Kong, Grigg, Uyetake, Parmley and Boothroyd2003) screened nucleotide sequences from types I, II and III of T. gondii for the identification of polymorphic regions from genes coding selected antigens. Allele-specific peptides were synthetized and screened by ELISA using sera from mice and humans. Synthetic peptides based on SAG2A, GRA3, GRA6 and GRA7 were able to discriminate type II from non-type II infections (Kong et al. Reference Kong, Grigg, Uyetake, Parmley and Boothroyd2003). In subsequent studies, serotyping for T. gondii infections using new recombinant polypeptides or new or improved synthetic peptides, as well as target populations from different regions, have been performed by ELISAs (Peyron et al. Reference Peyron, Lobry, Musset, Ferrandiz, Gomez-Marin, Petersen, Meroni, Rausher, Mercier, Picot and Cesbron-Delauw2006; Sousa et al. Reference Sousa, Ajzenberg, Vilanova, Costa and Darde2008, Reference Sousa, Ajzenberg, Marle, Aubert, Villena, da Costa and Darde2009). In two studies, peptide-microarrays were validated to discriminate the serological responses against clonal-type T. gondii strains in samples from humans (Maksimov et al. Reference Maksimov, Zerweck, Maksimov, Hotop, Gross, Spekker, Daubener, Werdermann, Niederstrasser, Petri, Mertens, Ulrich, Conraths and Schares2012b ) and cats (Maksimov et al. Reference Maksimov, Zerweck, Dubey, Pantchev, Frey, Maksimov, Reimer, Schutkowski, Hosseininejad, Ziller, Conraths and Schares2013). The latter study used sera from experimentally infected cats for validation and showed significant type-specific differences in the IgG response against the tested peptide panel. However, in many peptides, reactions were not clonal type-specific (Maksimov et al. Reference Maksimov, Zerweck, Dubey, Pantchev, Frey, Maksimov, Reimer, Schutkowski, Hosseininejad, Ziller, Conraths and Schares2013).

A peptide microarray was developed and validated for serotyping T. gondii infections in humans, aiming to differentiate between different manifestations of T. gondii infection (Maksimov et al. Reference Maksimov, Zerweck, Maksimov, Hotop, Gross, Pleyer, Spekker, Daubener, Werdermann, Niederstrasser, Petri, Mertens, Ulrich, Conraths and Schares2012a ). Thirty eight T. gondii synthetic peptides, consisting of 18 peptides characterized in previous studies, and 20 novel peptides, predicted by bioinformatics approach, were tested to differentiate acute, latent and ocular infections. Some peptides based on dense granule and microneme antigens (GRA2-28, MIC3-282 and MIC3-191) showed promising results for differentiation between acute and latent infections (Maksimov et al. Reference Maksimov, Zerweck, Maksimov, Hotop, Gross, Pleyer, Spekker, Daubener, Werdermann, Niederstrasser, Petri, Mertens, Ulrich, Conraths and Schares2012a ).

The use of synthetic peptides for T. gondii serotyping may have a great potential for discriminating between T. gondii infections and infections caused by other parasite species expected to induce some degree of serologic cross-reactivity. Of course, one important prerequisite is that peptides applied in such tests are not specific for particular clonal-types or genotypes of T. gondii or related parasite species. In addition, potential cross-reactivities need to be addressed; for instance, synthetic peptides considered to react specifically with antibodies generated by T. gondii infections need to be tested with sera from animals exposed to H. hammondi, as this parasite has a very close genetic relationship to the former (Walzer et al. Reference Walzer, Adomako-Ankomah, Dam, Herrmann, Schares, Dubey and Boyle2013, Reference Walzer, Wier, Dam, Srinivasan, Borges, English, Herrmann, Schares, Dubey and Boyle2014). The use of T. gondii-specific peptides for diagnosis in animals should also be tested with N. caninum, which may cross-react, as shown in Table 3. To our knowledge, there are no published studies using synthetic peptides to differentiate infections in animals cause by T. gondii, H. hammondi or N. caninum.

Stage-specific antigens (native or recombinant) from T. gondii have been investigated for decades by several research groups, including oocysts and sporozoites which can be produced in cats (Kasper et al. Reference Kasper, Bradley and Pfefferkorn1984; Ferguson et al. Reference Ferguson, Brecht and Soldati2000; Dumetre and Darde, Reference Dumetre and Darde2007; Possenti et al. Reference Possenti, Cherchi, Bertuccini, Pozio, Dubey and Spano2010, Reference Possenti, Fratini, Fantozzi, Pozio, Dubey, Ponzi, Pizzi and Spano2013; Bushkin et al. Reference Bushkin, Motari, Magnelli, Gubbels, Dubey, Miska, Bullitt, Costello, Robbins and Samuelson2012; Fritz et al. Reference Fritz, Bowyer, Bogyo, Conrad and Boothroyd2012). In contrast, antigens from Neospora spp. are mostly obtained from tachyzoites. Only small numbers of studies have produced N. caninum tissue cysts in cell culture or in animals (Weiss et al. Reference Weiss, Ma, Halonen, McAllister and Zhang1999; Tunev et al. Reference Tunev, McAlilster, Anderson-Sprecher and Weiss2002; Risco-Castillo et al. Reference Risco-Castillo, Fernandez-Garcia and Ortega-Mora2004; Vonlaufen et al. Reference Vonlaufen, Guetg, Naguleswaran, Muller, Björkman, Schares, von Blumroeder, Ellis and Hemphill2004), or have induced oocyst production in canid definitive hosts (McAllister et al. Reference McAllister, Dubey, Lindsay, Jolley, Wills and McGuire1998; Schares et al. Reference Schares, Heydorn, Cuppers, Conraths and Mehlhorn2001; Gondim et al. Reference Gondim, Gao and McAllister2002).

The identification of the first bradyzoite-specific gene of N. caninum (NcSAG4), an orthologue to TgSAG4, allowed the production and characterization of the recombinant protein rNcSAG4 (Fernandez-Garcia et al. Reference Fernandez-Garcia, Risco-Castillo, Zaballos, Alvarez-Garcia and Ortega-Mora2006). This antigen has been applied for the development of a stage-specific ELISA for bovine neosporosis (Aguado-Martinez et al. Reference Aguado-Martinez, Alvarez-Garcia, Fernandez-Garcia, Risco-Castillo, Arnaiz-Seco, Rebordosa-Trigueros, Navarro-Lozano and Ortega-Mora2008).

The production of Hammondia spp. antigens is even more difficult, because there is no permanent culture for these parasites (Riahi et al. Reference Riahi, Darde, Bouteille, Leboutet and Pestre-Alexandre1995; Schares et al. Reference Schares, Meyer, Barwald, Conraths, Riebe, Bohne, Rohn and Peters2003; Gondim et al. Reference Gondim, Meyer, Peters, Rezende-Gondim, Vrhovec, Pantchev, Bauer, Conraths and Schares2015). Therefore, most antigens from Hammondia spp. are derived from oocysts or from parasite cysts from intermediate hosts (Riahi et al. Reference Riahi, Bouteille and Darde1998, Reference Riahi, Leboutet, Bouteille, Dubremetz and Darde1999, Reference Riahi, Leboutet, Labrousse, Bouteille and Darde2000; Walzer et al. Reference Walzer, Adomako-Ankomah, Dam, Herrmann, Schares, Dubey and Boyle2013). Generation of recombinant antigens from Hammondia spp. is lacking. It would enable studies on exposure of animals and humans to these parasites, as well as on serologic cross-reactivity with related protozoa.

A serologic test for humans based on a T. gondii sporozoite-specific protein has been evaluated and seems to represent a promising method to discriminate between oocyst-induced infections from those transmitted by ingestion of infected meat (Hill et al. Reference Hill, Coss, Dubey, Wroblewski, Sautter, Hosten, Munoz-Zanzi, Mui, Withers, Boyer, Hermes, Coyne, Jagdis, Burnett, McLeod, Morton, Robinson and McLeod2011), which is an important consideration in epidemiological investigations. This study was the first to use a sporozoite protein, called T. gondii embryogenesis-related protein (TgERP) in a serologic test for T. gondii. In a recent study another sporozoite-derived protein called CCp5A was successfully used in an ELISA to identify oocyst-infected animals (Santana et al. Reference Santana, Gebrim, Carvalho, Barros, Barros, Pajuaba, Messina, Possenti, Cherchi, Reiche, Navarro, Garcia, Pozio, Mineo, Spano and Mineo2015); this test was able to identify antibodies in sera from humans, pigs, mice and chickens that were naturally or experimentally infected with T. gondii oocysts and discriminate between animals infected from ingestion of oocysts or by carnivorism. Further investigations are necessary for validation and to confirm whether the sporozoite proteins TgERP (Hill et al. Reference Hill, Coss, Dubey, Wroblewski, Sautter, Hosten, Munoz-Zanzi, Mui, Withers, Boyer, Hermes, Coyne, Jagdis, Burnett, McLeod, Morton, Robinson and McLeod2011) and CCp5A (Santana et al. Reference Santana, Gebrim, Carvalho, Barros, Barros, Pajuaba, Messina, Possenti, Cherchi, Reiche, Navarro, Garcia, Pozio, Mineo, Spano and Mineo2015) cross-react with sporozoite proteins derived from Hammondia spp. and Neospora spp. It is also important to test whether low infectious dose with oocysts will elicit detectable antibodies to TgERP or CCp5A.

Type or stage-specific antigens have a wide spectrum of applications, including investigations of infection outbreaks and identification of risk factors in selected populations (e.g. ingestion of oocyst or tissue cysts). Those antigens should be used with caution and only after rigorous validation in epidemiological studies.

Concluding remarks

Most currently available serologic tests for T. gondii may show some level of cross-reactivity with related coccidia, in particular with H. hammondi and N. caninum. Serological cross-reactivity between T. gondii and N. caninum has been observed when crude antigen ELISAs are employed. Several ELISAs based on recombinant species-specific antigens did not present cross-reactivity with N. caninum. Therefore, T. gondii shares more surface antigens with H. hammondi than with N. caninum.

When detecting T. gondii antibodies in animals, IFAT seems to be more specific than the ELISAs based on crude antigen. Since N. caninum is not considered to be a human pathogen, the major concern regarding serologic cross-reactivity would be potential exposure to H. hammondi, although it is unknown whether this parasite is able to induce infection in humans.

Antibodies from cattle infected with B. besnoiti cross-react with N. caninum antigens by IFAT in serum dilutions lower than the recommended cutoff (1:200). Novel B. besnoiti ELISAs (e.g. ELISA based on purified surface antigens) showed a lower degree of cross-reactivity with sera from cattle infected with N. caninum or other related parasites. Antibodies against bovine Sarcocystis sp. present negligible cross-reactions with N. caninum-immunodominant antigens. The development of ELISAs for N. caninum antibodies based on chimeric peptides specific for the parasite seems to be promising. Chimeric antigens would enable a better standardization of serologic tests, as a single protein is used. Moreover, chimeric antigens would potentially present higher sensitivity than single recombinant antigens. Despite the close phylogenetic relationship between N. caninum and H. heydorni, no evidence of serologic cross-reactivity between these protozoa has been confirmed to date. Toxoplasma gondii infections cause more confusion with N. caninum serology than those infections induced by H. heydorni. Neospora caninum and N. hughesi infections cannot be serologically differentiated, because currently available serologic tests are genus rather than species-specific for these protozoa.

FINANCIAL SUPPORT

Luís Gondim was funded by Universidade Federal da Bahia (Brazilian Government) for the open access publication fees. José Mineo and Luís Gondim are recipients of scholarships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

References

Aguado-Martinez, A., Alvarez-Garcia, G., Fernandez-Garcia, A., Risco-Castillo, V., Arnaiz-Seco, I., Rebordosa-Trigueros, X., Navarro-Lozano, V. and Ortega-Mora, L. M. (2008). Usefulness of rNcGRA7- and rNcSAG4-based ELISA tests for distinguishing primo-infection, recrudescence, and chronic bovine neosporosis. Veterinary Parasitology 157, 182195.CrossRefGoogle ScholarPubMed
Ahn, H. J., Song, K. J., Son, E. S., Shin, J. C. and Nam, H. W. (2001). Protease activity and host cell binding of the 42-kDa rhoptry protein from Toxoplasma gondii after secretion. Biochemical and Biophysical Research Communications 287, 630635.Google Scholar
Alvarez-Garcia, G., Pereira-Bueno, J., Gomez-Bautista, M. and Ortega-Mora, L. M. (2002). Pattern of recognition of Neospora caninum tachyzoite antigens by naturally infected pregnant cattle and aborted foetuses. Veterinary Parasitology 107, 1527.CrossRefGoogle ScholarPubMed
Alvarez-Garcia, G., Pitarch, A., Zaballos, A., Fernandez-Garcia, A., Gil, C., Gomez-Bautista, M., Aguado-Martinez, A. and Ortega-Mora, L. M. (2007). The NcGRA7 gene encodes the immunodominant 17 kDa antigen of Neospora caninum . Parasitology 134, 4150.Google Scholar
Alvarez-Garcia, G., Frey, C. F., Mora, L. M. and Schares, G. (2013). A century of bovine besnoitiosis: an unknown disease re-emerging in Europe. Trends in Parasitology 29, 407415.CrossRefGoogle ScholarPubMed
Anderson, M. L., Blanchard, P. C., Barr, B. C., Dubey, J. P., Hoffman, R. L. and Conrad, P. A. (1991). Neospora-like protozoan infection as a major cause of abortion in California dairy cattle. Journal of the American Veterinary Medical Association 198, 241244.CrossRefGoogle Scholar
Andrews, C. D., Fayer, R. and Dubey, J. P. (1990). Continuous in vitro cultivation of Sarcocystis cruzi . Journal of Parasitol 76, 254255.Google Scholar
Araujo, F. G., Dubey, J. P. and Remington, J. S. (1984). Antigenic similarity between the coccidian parasites Toxoplasma gondii and Hammondia hammondi . Journal of Protozoology 31, 145147.Google Scholar
Asai, T., Howe, D. K., Nakajima, K., Nozaki, T., Takeuchi, T. and Sibley, L. D. (1998). Neospora caninum: tachyzoites express a potent type-I nucleoside triphosphate hydrolase. Experimental Parasitology 90, 277285.Google Scholar
Atkinson, R. A., Cook, R. W., Reddacliff, L. A., Rothwell, J., Broady, K. W., Harper, P. and Ellis, J. T. (2000). Seroprevalence of Neospora caninum infection following an abortion outbreak in a dairy cattle herd. Australian Veterinary Journal 78, 262266.Google Scholar
Aubert, D., Maine, G. T., Villena, I., Hunt, J. C., Howard, L., Sheu, M., Brojanac, S., Chovan, L. E., Nowlan, S. F. and Pinon, J. M. (2000). Recombinant antigens to detect Toxoplasma gondii-specific immunoglobulin G and immunoglobulin M in human sera by enzyme immunoassay. Journal of Clinical Microbiology 38, 11441150.CrossRefGoogle ScholarPubMed
Barr, B. C., Conrad, P. A., Dubey, J. P. and Anderson, M. L. (1991). Neospora-like encephalomyelitis in a calf: pathology, ultrastructure, and immunoreactivity. Journal of Veterinary Diagnostic Investigation 3, 3946.Google Scholar
Barta, J. R. and Dubey, J. P. (1992). Characterization of anti-Neospora caninum hyperimmune rabbit serum by western blot analysis and immunoelectron microscopy. Parasitology Research 78, 689694.Google Scholar
Basso, W., Schares, G., Gollnick, N. S., Rutten, M. and Deplazes, P. (2011). Exploring the life cycle of Besnoitia besnoiti – experimental infection of putative definitive and intermediate host species. Veterinary Parasitology 178, 223234.Google Scholar
Baszler, T. V., Knowles, D. P., Dubey, J. P., Gay, J. M., Mathison, B. A. and McElwain, T. F. (1996). Serological diagnosis of bovine neosporosis by Neospora caninum monoclonal antibody-based competitive inhibition enzyme-linked immunosorbent assay. Journal of Clinical Microbiology 34, 14231428.CrossRefGoogle ScholarPubMed
Baszler, T. V., Adams, S., Vander-Schalie, J., Mathison, B. A. and Kostovic, M. (2001). Validation of a commercially available monoclonal antibody-based competitive-inhibition enzyme-linked immunosorbent assay for detection of serum antibodies to Neospora caninum in cattle. Journal of Clinical Microbiology 39, 38513857.CrossRefGoogle ScholarPubMed
Beghetto, E., Spadoni, A., Bruno, L., Buffolano, W. and Gargano, N. (2006). Chimeric antigens of Toxoplasma gondii: toward standardization of toxoplasmosis serodiagnosis using recombinant products. Journal of Clinical Microbiology 44, 21332140.CrossRefGoogle ScholarPubMed
Bela, S. R., Oliveira Silva, D. A., Cunha-Junior, J. P., Pirovani, C. P., Chaves-Borges, F. A., Reis de Carvalho, F., Carrijo de Oliveira, T. and Mineo, J. R. (2008). Use of SAG2A recombinant Toxoplasma gondii surface antigen as a diagnostic marker for human acute toxoplasmosis: analysis of titers and avidity of IgG and IgG1 antibodies. Diagnostic Microbiology and Infectious Disease 62, 245254.Google Scholar
Benetti, A. H., Schein, F. B., dos Santos, T. R., Toniollo, G. H., da Costa, A. J., Mineo, J. R., Lobato, J., de Oliveira Silva, D. A. and Gennari, S. M. (2009). Inquiry of antibodies anti-Neospora caninum in dairy cattle, dogs and rural workers of the south-west region of Mato Grosso State. Revista Brasileira de Parasitologia Veterinária 18(Suppl 1), 2933.Google Scholar
Beverley, J. K. and Beattie, C. P. (1952). Standardization of the dye test for toxoplasmosis. Journal of Clinical Pathology 5, 350353.CrossRefGoogle ScholarPubMed
Bjerkas, I., Mohn, S. F. and Presthus, J. (1984). Unidentified cyst-forming sporozoon causing encephalomyelitis and myositis in dogs. Zeitschrift für Parasitenkunde 70, 271274.CrossRefGoogle ScholarPubMed
Bjerkas, I., Jenkins, M. C. and Dubey, J. P. (1994). Identification and characterization of Neospora caninum tachyzoite antigens useful for diagnosis of neosporosis. Clinical and Diagnostic Laboratory Immunology 1, 214221.Google Scholar
Björkman, C. and Hemphill, A. (1998). Characterization of Neospora caninum iscom antigens using monoclonal antibodies. Parasite Immunology 20, 7380.CrossRefGoogle ScholarPubMed
Björkman, C. and Lunden, A. (1998). Application of iscom antigen preparations in ELISAs for diagnosis of Neospora and Toxoplasma infections. International Journal for Parasitology 28, 187193.CrossRefGoogle ScholarPubMed
Björkman, C., Lunden, A., Holmdahl, J., Barber, J., Trees, A. J. and Uggla, A. (1994). Neospora caninum in dogs: detection of antibodies by ELISA using an iscom antigen. Parasite Immunology 16, 643648.CrossRefGoogle ScholarPubMed
Björkman, C. and Uggla, A. (1999). Serological diagnosis of Neospora caninum infection. International Journal for Parasitology 29, 14971507.Google Scholar
Björkman, C., Holmdahl, O. J. and Uggla, A. (1997). An indirect enzyme-linked immunoassay (ELISA) for demonstration of antibodies to Neospora caninum in serum and milk of cattle. Veterinary Parasitology 68, 251260.CrossRefGoogle ScholarPubMed
Blagburn, B. L., Lindsay, D. S., Swango, L. J., Pidgeon, G. L. and Braund, K. G. (1988). Further characterization of the biology of Hammondia heydorni . Veterinary Parasitology 27, 193198.CrossRefGoogle ScholarPubMed
Bohne, W., Gross, U. and Heesemann, J. (1993). Differentiation between mouse-virulent and -avirulent strains of Toxoplasma gondii by a monoclonal antibody recognizing a 27-kilodalton antigen. Journal of Clinical Microbiology 31, 16411643.CrossRefGoogle ScholarPubMed
Burg, J. L., Perelman, D., Kasper, L. H., Ware, P. L. and Boothroyd, J. C. (1988). Molecular analysis of the gene encoding the major surface antigen of Toxoplasma gondii . Journal of Immunology 141, 35843591.Google Scholar
Bushkin, G. G., Motari, E., Magnelli, P., Gubbels, M. J., Dubey, J. P., Miska, K. B., Bullitt, E., Costello, C. E., Robbins, P. W. and Samuelson, J. (2012). Beta-1,3-glucan, which can be targeted by drugs, forms a trabecular scaffold in the oocyst walls of Toxoplasma and Eimeria . MBio 3. doi: 10.1128/mBio.00258-12.CrossRefGoogle Scholar
Buxton, D. (1998). Protozoan infections (Toxoplasma gondii, Neospora caninum and Sarcocystis spp.) in sheep and goats: recent advances. Veterinary Research 29, 289310.Google Scholar
Carreno, R. A., Schnitzler, B. E., Jeffries, A. C., Tenter, A. M., Johnson, A. M. and Barta, J. R. (1998). Phylogenetic analysis of coccidia based on 18S rDNA sequence comparison indicates that Isospora is most closely related to Toxoplasma and Neospora . Journal of Eukaryotic Microbiology 45, 184188.CrossRefGoogle ScholarPubMed
Carvalho, F. R., Silva, D. A., Cunha-Junior, J. P., Souza, M. A., Oliveira, T. C., Bela, S. R., Faria, G. G., Lopes, C. S. and Mineo, J. R. (2008). Reverse enzyme-linked immunosorbent assay using monoclonal antibodies against SAG1-related sequence, SAG2A, and p97 antigens from Toxoplasma gondii to detect specific immunoglobulin G (IgG), IgM, and IgA antibodies in human sera. Clinical and Vaccine Immunology 15, 12651271.Google Scholar
Cesbron-Delauw, M. F., Tomavo, S., Beauchamps, P., Fourmaux, M. P., Camus, D., Capron, A. and Dubremetz, J. F. (1994). Similarities between the primary structures of two distinct major surface proteins of Toxoplasma gondii . Journal of Biological Chemistry 269, 1621716222.CrossRefGoogle ScholarPubMed
Chahan, B., Gaturaga, I., Huang, X., Liao, M., Fukumoto, S., Hirata, H., Nishikawa, Y., Suzuki, H., Sugimoto, C., Nagasawa, H., Fujisaki, K., Igarashi, I., Mikami, T. and Xuan, X. (2003). Serodiagnosis of Neospora caninum infection in cattle by enzyme-linked immunosorbent assay with recombinant truncated NcSAG1. Veterinary Parasitology 118, 177185.CrossRefGoogle ScholarPubMed
Christie, E. and Dubey, J. P. (1977). Cross-immunity between Hammondia and Toxoplasma infections in mice and hamsters. Infection and Immunity 18, 412415.Google Scholar
Cortes, H. C., Nunes, S., Reis, Y., Staubli, D., Vidal, R., Sager, H., Leitao, A. and Gottstein, B. (2006). Immunodiagnosis of Besnoitia besnoiti infection by ELISA and Western blot. Veterinary Parasitology 141, 216225.CrossRefGoogle ScholarPubMed
Cortes, H., Leitao, A., Gottstein, B. and Hemphill, A. (2014). A review on bovine besnoitiosis: a disease with economic impact in herd health management, caused by Besnoitia besnoiti (Franco and Borges,). Parasitology 141, 14061417.CrossRefGoogle Scholar
Cunha-Junior, J. P., Silva, D. A., Silva, N. M., Souza, M. A., Souza, G. R., Prudencio, C. R., Pirovani, C. P., Cezar, M. C. J., Barbosa, B. F., Goulart, L. R. and Mineo, J. R. (2010). A4D12 monoclonal antibody recognizes a new linear epitope from SAG2A Toxoplasma gondii tachyzoites, identified by phage display bioselection. Immunobiology 215, 2637.Google Scholar
Desmonts, G. and Remington, J. S. (1980). Direct agglutination test for diagnosis of Toxoplasma infection: method for increasing sensitivity and specificity. Journal of Clinical Microbiology 11, 562568.CrossRefGoogle ScholarPubMed
Dubey, J. P. (1981). Protective immunity against clinical toxoplasmosis in dairy goats vaccinated with Hammondia hammondi and Hammondia heydorni . American Journal of Veterinary Research 42, 20682070.Google Scholar
Dubey, J. P. and Lindsay, D. S. (2006). Neosporosis, toxoplasmosis, and sarcocystosis in ruminants. Veterinary Clinics of North America Food Animal Practice 22, 645671.CrossRefGoogle ScholarPubMed
Dubey, J. P. and Sreekumar, C. (2003). Redescription of Hammondia hammondi and its differentiation from Toxoplasma gondii . International Journal for Parasitology 33, 14371453.Google Scholar
Dubey, J. P., Carpenter, J. L., Speer, C. A., Topper, M. J. and Uggla, A. (1988 a). Newly recognized fatal protozoan disease of dogs. Journal of the American Veterinary Medical Association 192, 12691285.Google ScholarPubMed
Dubey, J. P., Hattel, A. L., Lindsay, D. S. and Topper, M. J. (1988 b). Neonatal Neospora caninum infection in dogs: isolation of the causative agent and experimental transmission. Journal of the American Veterinary Medical Association 193, 12591263.Google Scholar
Dubey, J. P., Lindsay, D. S., Adams, D. S., Gay, J. M., Baszler, T. V., Blagburn, B. L. and Thulliez, P. (1996). Serologic responses of cattle and other animals infected with Neospora caninum . American Journal of Veterinary Research 57, 329336.Google Scholar
Dubey, J. P., Jenkins, M. C., Rajendran, C., Miska, K., Ferreira, L. R., Martins, J., Kwok, O. C. and Choudhary, S. (2011). Gray wolf (Canis lupus) is a natural definitive host for Neospora caninum . Veterinary Parasitology 181, 382387.CrossRefGoogle ScholarPubMed
Dubey, J. P., More, G., van Wilpe, E., Calero-Bernal, R., Verma, S. K. and Schares, G. (2016). Sarcocystis rommeli, n. sp. (Apicomplexa: Sarcocystidae) from Cattle (Bos taurus) and its Differentiation from Sarcocystis hominis . Journal of Eukaryotic Microbiology 63, 6268.CrossRefGoogle Scholar
Dumetre, A. and Darde, M. L. (2007). Detection of Toxoplasma gondii in water by an immunomagnetic separation method targeting the sporocysts. Parasitology Research 101, 989996.Google Scholar
Ferguson, D. J., Brecht, S. and Soldati, D. (2000). The microneme protein MIC4, or an MIC4-like protein, is expressed within the macrogamete and associated with oocyst wall formation in Toxoplasma gondii . International Journal for Parasitology 30, 12031209.Google Scholar
Fernandez-Garcia, A., Risco-Castillo, V., Zaballos, A., Alvarez-Garcia, G. and Ortega-Mora, L. M. (2006). Identification and molecular cloning of the Neospora caninum SAG4 gene specifically expressed at bradyzoite stage. Molecular and Biochemical Parasitology 146, 8997.Google Scholar
Fernandez-Garcia, A., Alvarez-Garcia, G., Risco-Castillo, V., Aguado-Martinez, A., Marcen, J. M., Rojo-Montejo, S., Castillo, J. A. and Ortega-Mora, L. M. (2010). Development and use of an indirect ELISA in an outbreak of bovine besnoitiosis in Spain. Veterinary Record 166, 818822.Google Scholar
Ferra, B., Holec-Gasior, L. and Kur, J. (2015 a). A new Toxoplasma gondii chimeric antigen containing fragments of SAG2, GRA1, and ROP1 proteins-impact of immunodominant sequences size on its diagnostic usefulness. Parasitology Research 114, 32913299.CrossRefGoogle ScholarPubMed
Ferra, B., Holec-Gasior, L. and Kur, J. (2015 b). Serodiagnosis of Toxoplasma gondii infection in farm animals (horses, swine, and sheep) by enzyme-linked immunosorbent assay using chimeric antigens. Parasitology International 64, 288294.Google Scholar
Frank, M., Klinger, I. and Pipano, E. (1970). The presence of antibody against Besnoitia besnoiti in dairy and beef cattle. Journal of Protozoology 17, 31.Google Scholar
Frenkel, J. K. and Dubey, J. P. (1975). Hammondia hammondi gen. nov., sp.nov., from domestic cats, a new coccidian related to Toxoplasma and Sarcocystis . Zeitschrift für Parasitenkunde 46, 312.CrossRefGoogle ScholarPubMed
Fritz, H. M., Bowyer, P. W., Bogyo, M., Conrad, P. A. and Boothroyd, J. C. (2012). Proteomic analysis of fractionated Toxoplasma oocysts reveals clues to their environmental resistance. PLoS ONE 7, e29955.Google Scholar
Fuchs, N., Sonda, S., Gottstein, B. and Hemphill, A. (1998). Differential expression of cell surface- and dense granule-associated Neospora caninum proteins in tachyzoites and bradyzoites. Journal of Parasitology 84, 753758.CrossRefGoogle ScholarPubMed
Fulton, J. D. and Turk, J. L. (1959). Direct agglutination test for Toxoplasma gondii . Lancet 2, 10681069.Google Scholar
Garcia-Lunar, P., More, G., Campero, L., Ortega-Mora, L. M. and Alvarez-Garcia, G. (2015). Anti-Neospora caninum and anti-Sarcocystis spp. specific antibodies cross-react with Besnoitia besnoiti and influence the serological diagnosis of bovine besnoitiosis. Veterinary Parasitology 214, 4954.Google Scholar
Gaturaga, I., Chahan, B., Xuan, X., Huang, X., Liao, M., Fukumoto, S., Hirata, H., Nishikawa, Y., Takashima, Y., Suzuki, H., Fujisaki, K. and Sugimoto, C. (2005). Detection of antibodies to Neospora caninum in cattle by enzyme-linked immunosorbent assay with truncated NcSRS2 expressed in Escherichia coli . The Journal of Parasitology 91, 191192.Google Scholar
Gjerde, B. (2016). Molecular characterisation of Sarcocystis bovifelis, Sarcocystis bovini n. sp., Sarcocystis hirsuta and Sarcocystis cruzi from cattle (Bos taurus) and Sarcocystis sinensis from water buffaloes (Bubalus bubalis). Parasitology Research 115, 14731492.Google Scholar
Gjerde, B. and Dahlgren, S. S. (2011). Hammondia triffittae n. comb. of foxes (Vulpes spp.): biological and molecular characteristics and differentiation from Hammondia heydorni of dogs. Parasitology 138, 303321.Google Scholar
Gondim, L. F. P., Gao, L. and McAllister, M. M. (2002). Improved production of Neospora caninum oocysts, cyclical oral transmission between dogs and cattle, and in vitro isolation from oocysts. Journal of Parasitology 88, 11591163.CrossRefGoogle ScholarPubMed
Gondim, L. F. P., McAllister, M. M., Pitt, W. C. and Zemlicka, D. E. (2004). Coyotes (Canis latrans) are definitive hosts of Neospora caninum . International Journal for Parasitology 34, 159161.Google Scholar
Gondim, L. F., Lindsay, D. S. and McAllister, M. M. (2009). Canine and bovine Neospora caninum control sera examined for cross-reactivity using Neospora caninum and Neospora hughesi indirect fluorescent antibody tests. Journal of Parasitology 95, 8688.Google Scholar
Gondim, L. F., Meyer, J., Peters, M., Rezende-Gondim, M. M., Vrhovec, M. G., Pantchev, N., Bauer, C., Conraths, F. J. and Schares, G. (2015). In vitro cultivation of Hammondia heydorni: generation of tachyzoites, stage conversion into bradyzoites, and evaluation of serologic cross-reaction with Neospora caninum . Veterinary Parasitology 210, 131140.Google Scholar
Gondim, L. F., Wolf, A., Vrhovec, M. G., Pantchev, N., Bauer, C., Langenmayer, M. C., Bohne, W., Teifke, J. P., Dubey, J. P., Conraths, F. J. and Schares, G. (2016). Characterization of an IgG monoclonal antibody targeted to both tissue cyst and sporocyst walls of Toxoplasma gondii . Experimental Parasitology 163, 4656.CrossRefGoogle Scholar
Hamidinejat, H., Seifi Abad Shapouri, M. R., Namavari, M. M., Shayan, P. and Kefayat, M. (2015). Development of an indirect ELISA using different fragments of recombinant Ncgra7 for detection of Neospora caninum infection in cattle and water buffalo. Iranian Journal of Parasitology, 10, 6977.Google Scholar
Hara, O. A., Liao, M., Baticados, W., Bannai, H., Zhang, G., Zhang, S., Lee, E.-g., Nishikawa, Y., Claveria, F. G. and Igarashi, M. (2006). Expression of recombinant dense granule protein 7 of Neospora caninum and evaluation of its diagnostic potential for canine neosporosis. Journal of Protozoology Research, 16, 3441.Google Scholar
Harkins, D., Clements, D. N., Maley, S., Marks, J., Wright, S., Esteban, I., Innes, E. A. and Buxton, D. (1998). Western blot analysis of the IgG responses of ruminants infected with Neospora caninum and with Toxoplasma gondii . Journal of Comparative Pathology 119, 4555.Google Scholar
Hemphill, A. and Gottstein, B. (1996). Identification of a major surface protein on Neospora caninum tachyzoites. Parasitology Research 82, 497504.CrossRefGoogle Scholar
Hemphill, A., Felleisen, R., Connolly, B., Gottstein, B., Hentrich, B. and Muller, N. (1997). Characterization of a cDNA-clone encoding Nc-p43, a major Neospora caninum tachyzoite surface protein. Parasitology 115, 581590.Google Scholar
Hemphill, A., Gajendran, N., Sonda, S., Fuchs, N., Gottstein, B., Hentrich, B. and Jenkins, M. (1998). Identification and characterisation of a dense granule-associated protein in Neospora caninum tachyzoites. International Journal for Parasitology 28, 429438.Google Scholar
Hill, D., Coss, C., Dubey, J. P., Wroblewski, K., Sautter, M., Hosten, T., Munoz-Zanzi, C., Mui, E., Withers, S., Boyer, K., Hermes, G., Coyne, J., Jagdis, F., Burnett, A., McLeod, P., Morton, H., Robinson, D. and McLeod, R. (2011). Identification of a sporozoite-specific antigen from Toxoplasma gondii . Journal of Parasitology 97, 328337.Google Scholar
Hoane, J. S., Yeargan, M. R., Stamper, S., Saville, W. J., Morrow, J. K., Lindsay, D. S. and Howe, D. K. (2005). Recombinant NhSAG1 ELISA: a sensitive and specific assay for detecting antibodies against Neospora hughesi in equine serum. Journal of Parasitology 91, 446452.CrossRefGoogle Scholar
Holec-Gasior, L. (2013). Toxoplasma gondii recombinant antigens as tools for serodiagnosis of human toxoplasmosis: current status of studies. Clinical and Vaccine Immunology 20, 13431351.Google Scholar
Holec-Gasior, L., Ferra, B. and Drapala, D. (2012 a). MIC1-MAG1-SAG1 chimeric protein, a most effective antigen for detection of human toxoplasmosis. Clinical and Vaccine Immunology 19, 19771979.CrossRefGoogle ScholarPubMed
Holec-Gasior, L., Ferra, B., Drapala, D., Lautenbach, D. and Kur, J. (2012 b). A new MIC1-MAG1 recombinant chimeric antigen can be used instead of the Toxoplasma gondii lysate antigen in serodiagnosis of human toxoplasmosis. Clinical and Vaccine Immunology 19, 5763.Google Scholar
Hosseininejad, M., Hosseini, F., Mosharraf, M., Shahbaz, S., Mahzounieh, M. and Schares, G. (2010). Development of an indirect ELISA test using an affinity purified surface antigen (P38) for sero-diagnosis of canine Neospora caninum infection. Veterinary Parasitology 171, 337342.Google Scholar
Howe, D. K. and Sibley, L. D. (1999). Comparison of the major antigens of Neospora caninum and Toxoplasma gondii . International Journal for Parasitology 29, 14891496.Google Scholar
Howe, D. K., Crawford, A. C., Lindsay, D. and Sibley, L. D. (1998). The p29 and p35 immunodominant antigens of Neospora caninum tachyzoites are homologous to the family of surface antigens of Toxoplasma gondii . Infection Immunity 66, 53225328.Google Scholar
Howe, D. K., Tang, K., Conrad, P. A., Sverlow, K., Dubey, J. P. and Sibley, L. D. (2002). Sensitive and specific identification of Neospora caninum infection of cattle based on detection of serum antibodies to recombinant Ncp29. Clinical and Diagnostic Laboratory Immunology 9, 611615.Google Scholar
Huang, P., Liao, M., Zhang, H., Lee, E. G., Nishikawa, Y. and Xuan, X. (2007). Dense-granule protein NcGRA7, a new marker for the serodiagnosis of Neospora caninum infection in aborting cows. Clinical and Vaccine Immunology 14, 16401643.CrossRefGoogle ScholarPubMed
Innes, E. A., Lundén, A., Esteban, I., Marks, J., Maley, S., Wright, S., Rae, A., Harkins, D., Vermeulen, A., McKendrick, I. J. and Buxton, D. (2001). A previous infection with Toxoplasma gondii does not protect against a challenge with Neospora caninum in pregnant sheep. Parasite Immunology 23, 121132.CrossRefGoogle Scholar
Jacquiet, P., Lienard, E. and Franc, M. (2010). Bovine besnoitiosis: epidemiological and clinical aspects. Veterinary Parasitology 174, 3036.CrossRefGoogle ScholarPubMed
Janitschke, K., De Vos, A. J. and Bigalke, R. D. (1984). Serodiagnosis of bovine besnoitiosis by ELISA and immunofluorescence tests. Onderstepoort Journal of Veterinary Research 51, 239243.Google Scholar
Jenkins, M. C., Wouda, W. and Dubey, J. P. (1997). Serological response over time to recombinant Neospora caninum antigens in cattle after a neosporosis-induced abortion. Clinical and Diagnostic Laboratory Immunology 4, 270274.CrossRefGoogle ScholarPubMed
Jesus, E. E., Almeida, M. A. and Atta, A. M. (2007). Anti-Neosporal IgG and IgE antibodies in canine neosporosis. Zoonoses and Public Health 54, 387392.CrossRefGoogle ScholarPubMed
Johnson, A. M. and Illana, S. (1991). Cloning of Toxoplasma gondii gene fragments encoding diagnostic antigens. Gene 99, 127132.Google Scholar
Johnson, A. M., Illana, S., McDonald, P. J. and Asai, T. (1989). Cloning, expression and nucleotide sequence of the gene fragment encoding an antigenic portion of the nucleoside triphosphate hydrolase of Toxoplasma gondii . Gene 85, 215220.Google Scholar
Johnson, A. M., Roberts, H. and Tenter, A. M. (1992). Evaluation of a recombinant antigen ELISA for the diagnosis of acute toxoplasmosis and comparison with traditional antigen ELISAs. Journal of Medical Microbiology 37, 404409.Google Scholar
Kasper, L. H. (1987). Isolation and characterization of a monoclonal anti-P30 antibody resistant mutant of Toxoplasma gondii . Parasite Immunology 9, 433445.Google Scholar
Kasper, L. H. and Khan, I. A. (1998). Antigen-specific CD8+ T cells protect against lethal toxoplasmosis in mice infected with Neospora caninum . Infection and Immunity 66, 15541560.Google Scholar
Kasper, L. H., Bradley, M. S. and Pfefferkorn, E. R. (1984). Identification of stage-specific sporozoite antigens of Toxoplasma gondii by monoclonal antibodies. Journal of Immunology 132, 443449.CrossRefGoogle ScholarPubMed
Kelen, A. E., Ayllon-Leindl, L. and Labzoffsky, N. A. (1962). lndirect fluorescent antibody method in serodiagnosis of toxoplasmosis. Canadian Journal of Microbiology 8, 545554.Google Scholar
King, J. S., Slapeta, J., Jenkins, D. J., Al-Qassab, S. E., Ellis, J. T. and Windsor, P. A. (2010). Australian dingoes are definitive hosts of Neospora caninum . International Journal for Parasitology 40, 945950.Google Scholar
Kobayashi, T., Narabu, S., Yanai, Y., Hatano, Y., Ito, A., Imai, S. and Ike, K. (2013). Gene cloning and characterization of the protein encoded by the Neospora caninum bradyzoite-specific antigen gene BAG1. Journal of Parasitology 99, 453458.Google Scholar
Kong, J. T., Grigg, M. E., Uyetake, L., Parmley, S. and Boothroyd, J. C. (2003). Serotyping of Toxoplasma gondii infections in humans using synthetic peptides. Journal of Infectious Diseases 187, 14841495.Google Scholar
Lally, N. C., Jenkins, M. C. and Dubey, J. P. (1996). Evaluation of two Neospora caninum recombinant antigens for use in an enzyme-linked immunosorbent assay for the diagnosis of bovine neosporosis. Clinical and Diagnostic Laboratory Immunology 3, 275279.Google Scholar
Lally, N., Jenkins, M., Liddell, S. and Dubey, J. P. (1997). A dense granule protein (NCDG1) gene from Neospora caninum . Molecular and Biochemical Parasitology 87, 239243.Google Scholar
Latif, B. M. and Jakubek, E. B. (2008). Determination of the specificities of monoclonal and polyclonal antibodies to Neospora, Toxoplasma and Cryptosporidium by fluorescent antibody test (FAT). Tropical Biomedicine 25, 225231.Google Scholar
Lau, Y. L., Thiruvengadam, G., Lee, W. W. and Fong, M. Y. (2011). Immunogenic characterization of the chimeric surface antigen 1 and 2 (SAG1/2) of Toxoplasma gondii expressed in the yeast Pichia pastoris. Parasitology Research 109, 871878.Google Scholar
Levine, N. D. and Ivens, V. (1981). The Coccidian Parasites (Protozoa. Apicomplexa) of Carnivores, 1st Edn. University of Illinois Press, Champaign.Google Scholar
Liao, M., Xuan, X., Huang, X., Shirafuji, H., Fukumoto, S., Hirata, H., Suzuki, H. and Fujisaki, K. (2005 a). Identification and characterization of cross-reactive antigens from Neospora caninum and Toxoplasma gondii . Parasitology 130, 481488.Google Scholar
Liao, M., Zhang, S., Xuan, X., Zhang, G., Huang, X., Igarashi, I. and Fujisaki, K. (2005 b). Development of rapid immunochromatographic test with recombinant NcSAG1 for detection of antibodies to Neospora caninum in cattle. Clinical and Diagnostic Laboratory Immunology 12, 885887.Google Scholar
Liddell, S., Lally, N. C., Jenkins, M. C. and Dubey, J. P. (1998). Isolation of the cDNA encoding a dense granule associated antigen (NCDG2) of Neospora caninum . Molecular and Biochemical Parasitology 93, 153158.CrossRefGoogle ScholarPubMed
Lindsay, D. S., Blagburn, B. L. and Dubey, J. P. (1990). Infection of mice with Neospora caninum (Protozoa: Apicomplexa) does not protect against challenge with Toxoplasma gondii . Infection and Immunity 58, 26992700.Google Scholar
Lindsay, D. S., Lenz, S. D., Dykstra, C. C., Blagburn, B. L. and Dubey, J. P. (1998). Vaccination of mice with Neospora caninum: response to oral challenge with Toxoplasma gondii oocysts. Journal of Parasitology 84, 311315.CrossRefGoogle ScholarPubMed
Liu, J., Yu, J., Wang, M., Liu, Q., Zhang, W., Deng, C. and Ding, J. (2007). Serodiagnosis of Neospora caninum infection in cattle using a recombinant tNcSRS2 protein-based ELISA. Veterinary Parasitology 143, 358363.Google Scholar
Lobato, J., Silva, D. A., Mineo, T. W., Amaral, J. D., Segundo, G. R., Costa-Cruz, J. M., Ferreira, M. S., Borges, A. S. and Mineo, J. R. (2006). Detection of immunoglobulin G antibodies to Neospora caninum in humans: high seropositivity rates in patients who are infected by human immunodeficiency virus or have neurological disorders. Clinical and Vaccine Immunology 13, 8489.CrossRefGoogle ScholarPubMed
Lorenzi, H., Khan, A., Behnke, M. S., Namasivayam, S., Swapna, L. S., Hadjithomas, M., Karamycheva, S., Pinney, D., Brunk, B. P., Ajioka, J. W., Ajzenberg, D., Boothroyd, J. C., Boyle, J. P., Darde, M. L., Diaz-Miranda, M. A., Dubey, J. P., Fritz, H. M., Gennari, S. M., Gregory, B. D., Kim, K., Saeij, J. P., Su, C., White, M. W., Zhu, X. Q., Howe, D. K., Rosenthal, B. M., Grigg, M. E., Parkinson, J., Liu, L., Kissinger, J. C., Roos, D. S. and David Sibley, L. (2016). Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nature Communications 7, 10147.Google Scholar
Louie, K., Sverlow, K. W., Barr, B. C., Anderson, M. L. and Conrad, P. A. (1997). Cloning and characterization of two recombinant Neospora protein fragments and their use in serodiagnosis of bovine neosporosis. Clinical and Diagnostic Laboratory Immunology 4, 692699.Google Scholar
Lunde, M. N. and Jacobs, L. (1958). A comparison of results of hemagglutination and dye tests for toxoplasmosis in a survey of Trinidad natives. American Journal of Tropical Medicine and Hygiene 7, 523525.Google Scholar
Macedo, A. G. Jr., Cunha, J. P. Jr., Cardoso, T. H., Silva, M. V., Santiago, F. M., Silva, J. S., Pirovani, C. P., Silva, D. A., Mineo, J. R. and Mineo, T. W. (2013). SAG2A protein from Toxoplasma gondii interacts with both innate and adaptive immune compartments of infected hosts. Parasites & Vectors 6, 163.CrossRefGoogle ScholarPubMed
Maksimov, P., Zerweck, J., Maksimov, A., Hotop, A., Gross, U., Pleyer, U., Spekker, K., Daubener, W., Werdermann, S., Niederstrasser, O., Petri, E., Mertens, M., Ulrich, R. G., Conraths, F. J. and Schares, G. (2012 a). Peptide microarray analysis of in silico-predicted epitopes for serological diagnosis of Toxoplasma gondii infection in humans. Clinical and Vaccine Immunology 19, 865874.Google Scholar
Maksimov, P., Zerweck, J., Maksimov, A., Hotop, A., Gross, U., Spekker, K., Daubener, W., Werdermann, S., Niederstrasser, O., Petri, E., Mertens, M., Ulrich, R. G., Conraths, F. J. and Schares, G. (2012 b). Analysis of clonal type-specific antibody reactions in Toxoplasma gondii seropositive humans from Germany by peptide-microarray. PLoS ONE 7, e34212.Google Scholar
Maksimov, P., Zerweck, J., Dubey, J. P., Pantchev, N., Frey, C. F., Maksimov, A., Reimer, U., Schutkowski, M., Hosseininejad, M., Ziller, M., Conraths, F. J. and Schares, G. (2013). Serotyping of Toxoplasma gondii in cats (Felis domesticus) reveals predominance of type II infections in Germany. PLoS ONE 8, e80213.Google Scholar
Marsh, A. E., Barr, B. C., Packham, A. E. and Conrad, P. A. (1998). Description of a new Neospora species (Protozoa: Apicomplexa: Sarcocystidae). Journal of Parasitology 84, 983991.Google Scholar
Marsh, A. E., Howe, D. K., Wang, G., Barr, B. C., Cannon, N. and Conrad, P. A. (1999). Differentiation of Neospora hughesi from Neospora caninum based on their immunodominant surface antigen, SAG1 and SRS2. International Journal for Parasitology 29, 15751582.Google Scholar
McAllister, M. M., Parmley, S. F., Weiss, L. M., Welch, V. J. and McGuire, A. M. (1996). An immunohistochemical method for detecting bradyzoite antigen (BAG5) in Toxoplasma gondii-infected tissues cross-reacts with a Neospora caninum bradyzoite antigen. Journal of Parasitology 82, 354355.CrossRefGoogle ScholarPubMed
McAllister, M. M., Dubey, J. P., Lindsay, D. S., Jolley, W. R., Wills, R. A. and McGuire, A. M. (1998). Dogs are definitive hosts of Neospora caninum . International Journal for Parasitology 28, 14731478.Google Scholar
McGarry, J. W., Guy, F., Trees, A. J., Williams, D. J. L., Davison, H. C. and Björkman, C. (2000). Validation and application of an inhibition ELISA to detect serum antibodies to Neospora caninum in different host species In: In Hemphill, A., Gottstein, B. (Eds.), International Journal for Parasitology: European perspective on Neospora caninum pp. 880884.Google Scholar
Mineo, J. R., McLeod, R., Mack, D., Smith, J., Khan, I. A., Ely, K. H. and Kasper, L. H. (1993). Antibodies to Toxoplasma gondii major surface protein (SAG-1, P30) inhibit infection of host cells and are produced in murine intestine after peroral infection. Journal of Immunology 150, 39513964.CrossRefGoogle ScholarPubMed
Mugridge, N. B., Morrison, D. A., Jakel, T., Heckeroth, A. R., Tenter, A. M. and Johnson, A. M. (2000). Effects of sequence alignment and structural domains of ribosomal DNA on phylogeny reconstruction for the protozoan family sarcocystidae. Molecular Biology and Evolution 17, 18421853.Google Scholar
Munday, B. L. and Dubey, J. P. (1986). Serological cross-reactivity between Hammondia hammondi and Toxoplasma gondii in experimentally inoculated sheep. Australian Veterinary Journal 63, 344345.CrossRefGoogle ScholarPubMed
Munday, B. L. and Dubey, J. P. (1988). Prevention of Toxoplasma gondii abortion in goats by vaccination with oocysts of Hammondia hammondi . Australian Veterinary Journal 65, 150153.CrossRefGoogle ScholarPubMed
Nahtman, T., Jernberg, A., Mahdavifar, S., Zerweck, J., Schutkowski, M., Maeurer, M. and Reilly, M. (2007). Validation of peptide epitope microarray experiments and extraction of quality data. Journal of Immunological Methods 328, 113.Google Scholar
Neuman, M. (1972). Serological survey of Besnoitia besnoiti (Marotel 1912) infection in Israel by immunofluorescence. Zentralblatt für Veterinarmedizin. Reihe B 19, 391396.Google Scholar
Neuman de Vegvar, H. E., Amara, R. R., Steinman, L., Utz, P. J., Robinson, H. L. and Robinson, W. H. (2003). Microarray profiling of antibody responses against simian-human immunodeficiency virus: postchallenge convergence of reactivities independent of host histocompatibility type and vaccine regimen. Journal of Virology 77, 1112511138.Google Scholar
Nishikawa, Y., Kousaka, Y., Tragoolpua, K., Xuan, X., Makala, L., Fujisaki, K., Mikami, T. and Nagasawa, H. (2001). Characterization of Neospora caninum surface protein NcSRS2 based on baculovirus expression system and its application for serodiagnosis of Neospora infection. Journal of Clinical Microbiology 39, 39873991.Google Scholar
Nishikawa, Y., Claveria, F. G., Fujisaki, K. and Nagasawa, H. (2002). Studies on serological cross-reaction of Neospora caninum with Toxoplasma gondii and Hammondia heydorni . Journal of Veterinary Medical Science 64, 161164.Google Scholar
O'Toole, D. and Jeffrey, M. (1987). Congenital sporozoan encephalomyelitis in a calf. Veterinary Record 121, 563566.Google Scholar
Odberg-Ferragut, C., Soete, M., Engels, A., Samyn, B., Loyens, A., Van Beeumen, J., Camus, D. and Dubremetz, J. F. (1996). Molecular cloning of the Toxoplasma gondii sag4 gene encoding an 18 kDa bradyzoite specific surface protein. Molecular and Biochemical Parasitology 82, 237244.Google Scholar
Okeoma, C. M., Williamson, N. B., Pomroy, W. E. and Stowell, K. M. (2004). Recognition patterns of Neospora caninum tachyzoite antigens by bovine IgG at different IFAT titres. Parasite Immunology 26, 177185.Google Scholar
Osawa, T., Wastling, J., Maley, S., Buxton, D. and Innes, E. A. (1998). A multiple antigen ELISA to detect Neospora-specific antibodies in bovine sera, bovine foetal fluids, ovine and caprine sera. Veterinary Parasitology 79, 1934.Google Scholar
Pare, J., Hietala, S. K. and Thurmond, M. C. (1995 a). An enzyme-linked immunosorbent assay (ELISA) for serological diagnosis of Neospora sp. infection in cattle. Journal of Veterinary Diagnostic Investigation 7, 352359.Google Scholar
Pare, J., Hietala, S. K. and Thurmond, M. C. (1995 b). Interpretation of an indirect fluorescent antibody test for diagnosis of Neospora sp. infection in cattle. Journal of Veterinary Diagnostic Investigation 7, 273275.Google Scholar
Parish, S. M., Maag-Miller, L., Besser, T. E., Weidner, J. P., McElwain, T., Knowles, D. P. and Leathers, C. W. (1987). Myelitis associated with protozoal infection in newborn calves. Journal of the American Veterinary Medical Association 191, 15991600.Google Scholar
Parmley, S. F., Gross, U., Sucharczuk, A., Windeck, T., Sgarlato, G. D. and Remington, J. S. (1994). Two alleles of the gene encoding surface antigen P22 in 25 strains of Toxoplasma gondii . Journal of Parasitology 80, 293301.Google Scholar
Parmley, S. F., Weiss, L. M. and Yang, S. (1995). Cloning of a bradyzoite-specific gene of Toxoplasma gondii encoding a cytoplasmic antigen. Molecular and Biochemical Parasitology 73, 253257.Google Scholar
Peyron, F., Lobry, J. R., Musset, K., Ferrandiz, J., Gomez-Marin, J. E., Petersen, E., Meroni, V., Rausher, B., Mercier, C., Picot, S. and Cesbron-Delauw, M. F. (2006). Serotyping of Toxoplasma gondii in chronically infected pregnant women: predominance of type II in Europe and types I and III in Colombia (South America). Microbes and Infection 8, 23332340.Google Scholar
Pitel, P. H., Romand, S., Pronost, S., Foucher, N., Gargala, G., Maillard, K., Thulliez, P., Collobert-Laugier, C., Tainturier, D., Fortier, G. and Ballet, J. J. (2003). Investigation of Neospora sp. antibodies in aborted mares from Normandy, France. Veterinary Parasitology 118, 16.Google Scholar
Possenti, A., Cherchi, S., Bertuccini, L., Pozio, E., Dubey, J. P. and Spano, F. (2010). Molecular characterisation of a novel family of cysteine-rich proteins of Toxoplasma gondii and ultrastructural evidence of oocyst wall localisation. International Journal for Parasitology 40, 16391649.Google Scholar
Possenti, A., Fratini, F., Fantozzi, L., Pozio, E., Dubey, J. P., Ponzi, M., Pizzi, E. and Spano, F. (2013). Global proteomic analysis of the oocyst/sporozoite of Toxoplasma gondii reveals commitment to a host-independent lifestyle. BMC Genomics 14, 183.Google Scholar
Prince, J. B., Auer, K. L., Huskinson, J., Parmley, S. F., Araujo, F. G. and Remington, J. S. (1990). Cloning, expression, and cDNA sequence of surface antigen P22 from Toxoplasma gondii . Molecular and Biochemical Parasitology 43, 97106.CrossRefGoogle ScholarPubMed
Reddacliff, G. L., Parker, S. J., Dubey, J. P., Nicholls, P. J., Johnson, A. M. and Cooper, D. W. (1993). An attempt to prevent acute toxoplasmosis in macropods by vaccination with Hammondia hammondi . Australian Veterinary Journal 70, 3335.Google Scholar
Regidor-Cerrillo, J., Garcia-Lunar, P., Pastor-Fernandez, I., Alvarez-Garcia, G., Collantes-Fernandez, E., Gomez-Bautista, M. and Ortega-Mora, L. M. (2015). Neospora caninum tachyzoite immunome study reveals differences among three biologically different isolates. Veterinary Parasitology 212, 9299.Google Scholar
Reid, A. J., Vermont, S. J., Cotton, J. A., Harris, D., Hill-Cawthorne, G. A., Konen-Waisman, S., Latham, S. M., Mourier, T., Norton, R., Quail, M. A., Sanders, M., Shanmugam, D., Sohal, A., Wasmuth, J. D., Brunk, B., Grigg, M. E., Howard, J. C., Parkinson, J., Roos, D. S., Trees, A. J., Berriman, M., Pain, A. and Wastling, J. M. (2012). Comparative genomics of the apicomplexan parasites Toxoplasma gondii and Neospora caninum: Coccidia differing in host range and transmission strategy. PLoS Pathogens 8, e1002567.Google Scholar
Riahi, H., Darde, M. L., Bouteille, B., Leboutet, M. J. and Pestre-Alexandre, M. (1995). Hammondia hammondi cysts in cell cultures. Journal of Parasitology 81, 821824.CrossRefGoogle ScholarPubMed
Riahi, H., Bouteille, B. and Darde, M. L. (1998). Antigenic similarity between Hammondia hammondi and Toxoplasma gondii tachyzoites. Journal of Parasitology 84, 651653.Google Scholar
Riahi, H., Leboutet, M. J., Bouteille, B., Dubremetz, J. F. and Darde, M. L. (1999). Hammondia hammondi organelle proteins are recognized by monoclonal antibodies directed against organelles of Toxoplasma gondii . Journal of Parasitology 85, 580583.Google Scholar
Riahi, H., Leboutet, M. J., Labrousse, F., Bouteille, B. and Darde, M. L. (2000). Monoclonal antibodies to Hammondia hammondi allowing immunological differentiation from Toxoplasma gondii . Journal of Parasitology 86, 13621366.CrossRefGoogle ScholarPubMed
Risco-Castillo, V., Fernandez-Garcia, A. and Ortega-Mora, L. M. (2004). Comparative analysis of stress agents in a simplified in vitro system of Neospora caninum bradyzoite production. Journal of Parasitology 90, 466470.Google Scholar
Ruehlmann, D., Podell, M., Oglesbee, M. and Dubey, J. P. (1995). Canine neosporosis: a case report and literature review. Journal of the American Animal Hospital Association 31, 174183.Google Scholar
Sabin, A. B. (1949). Complement fixation test in toxoplasmosis and persistence of the antibody in human beings. Pediatrics 4, 443453.Google Scholar
Sabin, A. B. and Feldman, H. A. (1948). Dyes as microchemical indicators of a new immunity phenomenon affecting a protozoon parasite (Toxoplasma). Science 108, 660663.Google Scholar
Santana, S. S., Silva, D. A., Vaz, L. D., Pirovani, C. P., Barros, G. B., Lemos, E. M., Dietze, R., Mineo, J. R. and Cunha-Junior, J. P. (2012). Analysis of IgG subclasses (IgG1 and IgG3) to recombinant SAG2A protein from Toxoplasma gondii in sequential serum samples from patients with toxoplasmosis. Immunology Letters 143, 193201.Google Scholar
Santana, S. S., Gebrim, L. C., Carvalho, F. R., Barros, H. S., Barros, P. C., Pajuaba, A. C., Messina, V., Possenti, A., Cherchi, S., Reiche, E. M., Navarro, I. T., Garcia, J. L., Pozio, E., Mineo, T. W., Spano, F. and Mineo, J. R. (2015). CCp5A protein from Toxoplasma gondii as a serological marker of oocyst-driven infections in humans and domestic animals. Frontiers in Microbiology 6, 1305.Google Scholar
Schares, G., Dubremetz, J. F., Dubey, J. P., Barwald, A., Loyens, A. and Conraths, F. J. (1999 a). Neospora caninum: identification of 19-, 38-, and 40-kDa surface antigens and a 33-kDa dense granule antigen using monoclonal antibodies. Experimental Parasitology 92, 109119.Google Scholar
Schares, G., Rauser, M., Zimmer, K., Peters, M., Wurm, R., Dubey, J. P., de Graaf, D. C., Edelhofer, R., Mertens, C., Hess, G. and Conraths, F. J. (1999 b). Serological differences in Neospora caninum-associated epidemic and endemic abortions. Journal of Parasitology 85, 688694.Google Scholar
Schares, G., Rauser, M., Sondgen, P., Rehberg, P., Barwald, A., Dubey, J. P., Edelhofer, R. and Conraths, F. J. (2000). Use of purified tachyzoite surface antigen p38 in an ELISA to diagnose bovine neosporosis. International Journal for Parasitology 30, 11231130.Google Scholar
Schares, G., Heydorn, A. O., Cuppers, A., Conraths, F. J. and Mehlhorn, H. (2001). Cyclic transmission of Neospora caninum: serological findings in dogs shedding oocysts. Parasitology Research 87, 873877.Google Scholar
Schares, G., Meyer, J., Barwald, A., Conraths, F. J., Riebe, R., Bohne, W., Rohn, K. and Peters, M. (2003). A Hammondia-like parasite from the European fox (Vulpes vulpes) forms biologically viable tissue cysts in cell culture. International Journal for Parasitology 33, 229234.Google Scholar
Schares, G., Basso, W., Majzoub, M., Rostaher, A., Scharr, J. C., Langenmayer, M. C., Selmair, J., Dubey, J. P., Cortes, H. C., Conraths, F. J. and Gollnick, N. S. (2010). Comparative evaluation of immunofluorescent antibody and new immunoblot tests for the specific detection of antibodies against Besnoitia besnoiti tachyzoites and bradyzoites in bovine sera. Veterinary Parasitology 171, 3240.Google Scholar
Schares, G., Basso, W., Majzoub, M., Rostaher, A., Scharr, J. C., Langenmayer, M. C., Selmair, J., Dubey, J. P., Cortes, H. C., Conraths, F. J., Haupt, T., Purro, M., Raeber, A., Buholzer, P. and Gollnick, N. S. (2011). Evaluation of a commercial ELISA for the specific detection of antibodies against Besnoitia besnoiti . Veterinary Parasitology 175, 5259.Google Scholar
Schares, G., Langenmayer, M. C., Scharr, J. C., Minke, L., Maksimov, P., Maksimov, A., Schares, S., Barwald, A., Basso, W., Dubey, J. P., Conraths, F. J. and Gollnick, N. S. (2013). Novel tools for the diagnosis and differentiation of acute and chronic bovine besnoitiosis. International Journal for Parasitology 43, 143154.Google Scholar
Schares, G., Ziller, M., Herrmann, D. C., Globokar, M. V., Pantchev, N. and Conraths, F. J. (2016). Seasonality in the proportions of domestic cats shedding Toxoplasma gondii or Hammondia hammondi oocysts is associated with climatic factors. International Journal for Parasitology 46, 263273.CrossRefGoogle ScholarPubMed
Shkap, V., Ungar-Waron, H., Pipano, E. and Greenblatt, C. (1984). Enzyme linked immunosorbent assay for detection of antibodies against Besnoitia besnoiti in cattle. Tropical Animal Health and Production 16, 233238.CrossRefGoogle ScholarPubMed
Shkap, V., Reske, A., Pipano, E., Fish, L. and Baszler, T. (2002). Immunological relationship between Neospora caninum and Besnoitia besnoiti . Veterinary Parasitology 106, 3543.Google Scholar
Sibley, L. D., Pfefferkorn, E. R. and Boothroyd, J. C. (1991). Proposal for a uniform genetic nomenclature in Toxoplasma gondii . Parasitology Today 7, 327328.Google Scholar
Silva, D. A., Lobato, J., Mineo, T. W. and Mineo, J. R. (2007). Evaluation of serological tests for the diagnosis of Neospora caninum infection in dogs: optimization of cut off titers and inhibition studies of cross-reactivity with Toxoplasma gondii . Veterinary Parasitology 143, 234244.Google Scholar
Slapeta, J. R., Koudela, B., Votypka, J., Modry, D., Horejs, R. and Lukes, J. (2002). Coprodiagnosis of Hammondia heydorni in dogs by PCR based amplification of ITS 1 rRNA: differentiation from morphologically indistinguishable oocysts of Neospora caninum . Veterinary Journal 163, 147154.Google Scholar
Soares, R. M., Cortez, L. R., Gennari, S. M., Sercundes, M. K., Keid, L. B. and Pena, H. F. (2009). Crab-eating fox (Cerdocyon thous), a South American canid, as a definitive host for Hammondia heydorni . Veterinary Parasitology 162, 4650.Google Scholar
Sohn, C. S., Cheng, T. T., Drummond, M. L., Peng, E. D., Vermont, S. J., Xia, D., Cheng, S. J., Wastling, J. M. and Bradley, P. J. (2011). Identification of novel proteins in Neospora caninum using an organelle purification and monoclonal antibody approach. PLoS ONE 6, e18383.Google Scholar
Sonda, S., Fuchs, N., Connolly, B., Fernandez, P., Gottstein, B. and Hemphill, A. (1998). The major 36 kDa Neospora caninum tachyzoite surface protein is closely related to the major Toxoplasma gondii surface antigen. Molecular and Biochemical Parasitology 97, 97108.Google Scholar
Sonda, S., Fuchs, N., Gottstein, B. and Hemphill, A. (2000). Molecular characterization of a novel microneme antigen in Neospora caninum . Molecular and Biochemical Parasitology 108, 3951.Google Scholar
Sondgen, P., Peters, M., Barwald, A., Wurm, R., Holling, F., Conraths, F. J. and Schares, G. (2001). Bovine neosporosis: immunoblot improves foetal serology. Veterinary Parasitology 102, 279290.Google Scholar
Sousa, S., Ajzenberg, D., Vilanova, M., Costa, J. and Darde, M. L. (2008). Use of GRA6-derived synthetic polymorphic peptides in an immunoenzymatic assay to serotype Toxoplasma gondii in human serum samples collected from three continents. Clinical and Vaccine Immunology 15, 13801386.Google Scholar
Sousa, S., Ajzenberg, D., Marle, M., Aubert, D., Villena, I., da Costa, J. C. and Darde, M. L. (2009). Selection of polymorphic peptides from GRA6 and GRA7 sequences of Toxoplasma gondii strains to be used in serotyping. Clinical and Vaccine Immunology 16, 11581169.Google Scholar
Srinivasan, S., Baszler, T., Vonlaufen, N., Leepin, A., Sanderson, S. J., Wastling, J. M. and Hemphill, A. (2006). Monoclonal antibody directed against Neospora caninum tachyzoite carbohydrate epitope reacts specifically with apical complex-associated sialylated beta tubulin. Journal of Parasitology 92, 12351243.Google Scholar
Staubli, D., Nunez, S., Sager, H., Schares, G. and Gottstein, B. (2006). Neospora caninum immunoblotting improves serodiagnosis of bovine neosporosis. Parasitology Research 99, 648658.Google Scholar
Stenlund, S., Björkman, C., Holmdahl, O. J., Kindahl, H. and Uggla, A. (1997). Characterization of a Swedish bovine isolate of Neospora caninum . Parasitology Research 83, 214219.Google Scholar
Sundermann, C. A., Estridge, B. H., Branton, M. S., Bridgman, C. R. and Lindsay, D. S. (1997). Immunohistochemical diagnosis of Toxoplasma gondii: potential for cross- reactivity with Neospora caninum . Journal of Parasitology 83, 440443.Google Scholar
Tenter, A. M., Vietmeyer, C. and Johnson, A. M. (1992). Development of ELISAs based on recombinant antigens for the detection of Toxoplasma gondii-specific antibodies in sheep and cats. Veterinary Parasitology 43, 189201.Google Scholar
Tenter, A. M., Heckeroth, A. R. and Weiss, L. M. (2000). Toxoplasma gondii: from animals to humans. International Journal for Parasitology 30, 12171258.Google Scholar
Tunev, S. S., McAlilster, M. M., Anderson-Sprecher, R. C. and Weiss, L. M. (2002). Neospora caninum in vitro: evidence that the destiny of a parasitophorous vacuole depends on the phenotype of the progenitor zoite. Journal of Parasitology 88, 10951099.Google Scholar
Uchida, Y., Ike, K., Kurotaki, T., Ito, A. and Imai, S. (2004). Monoclonal antibodies preventing invasion of Neospora caninum tachyzoites into host cells. Journal of Veterinary Medical Science 66, 13551358.Google Scholar
Uzêda, R. S., Schares, G., Ortega-Mora, L. M., Madruga, C. R., Aguado-Martinez, A., Corbellini, L. G., Driemeier, D. and Gondim, L. F. (2013). Combination of monoclonal antibodies improves immunohistochemical diagnosis of Neospora caninum . Veterinary Parasitology 197, 477486.Google Scholar
Veronesi, F., Diaferia, M., Mandara, M. T., Marenzoni, M. L., Cittadini, F. and Piergili Fioretti, D. (2008). Neospora spp. infection associated with equine abortion and/or stillbirth rate. Veterinary Research Communications 32(Suppl 1), S223S226.Google Scholar
Vonlaufen, N., Guetg, N., Naguleswaran, A., Muller, N., Björkman, C., Schares, G., von Blumroeder, D., Ellis, J. and Hemphill, A. (2004). In vitro induction of Neospora caninum bradyzoites in vero cells reveals differential antigen expression, localization, and host-cell recognition of tachyzoites and bradyzoites. Infection and Immunity 72, 576583.CrossRefGoogle ScholarPubMed
Walls, K. W., Bullock, S. L. and English, D. K. (1977). Use of the enzyme-linked immunosorbent assay (ELISA) and its microadaptation for the serodiagnosis of toxoplasmosis. Journal of Clinical Microbiology 5, 273277.Google Scholar
Walsh, C. P., Vemulapalli, R., Sriranganathan, N., Zajac, A. M., Jenkins, M. C. and Lindsay, D. S. (2001). Molecular comparison of the dense granule proteins GRA6 and GRA7 of Neospora hughesi and Neospora caninum . International Journal for Parasitology 31, 253258.Google Scholar
Walzer, K. A., Adomako-Ankomah, Y., Dam, R. A., Herrmann, D. C., Schares, G., Dubey, J. P. and Boyle, J. P. (2013). Hammondia hammondi, an avirulent relative of Toxoplasma gondii, has functional orthologs of known T. gondii virulence genes. Proceedings of the National Academy of Sciences of the United States of America 110, 74467451.Google Scholar
Walzer, K. A., Wier, G. M., Dam, R. A., Srinivasan, A. R., Borges, A. L., English, E. D., Herrmann, D. C., Schares, G., Dubey, J. P. and Boyle, J. P. (2014). Hammondia hammondi harbors functional orthologs of the host-modulating effectors GRA15 and ROP16 but is distinguished from Toxoplasma gondii by a unique transcriptional profile. Eukaryotic Cell 13, 15071518.Google Scholar
Wasmuth, J. D., Pszenny, V., Haile, S., Jansen, E. M., Gast, A. T., Sher, A., Boyle, J. P., Boulanger, M. J., Parkinson, J. and Grigg, M. E. (2012). Integrated bioinformatic and targeted deletion analyses of the SRS gene superfamily identify SRS29C as a negative regulator of Toxoplasma virulence. MBio 3. doi: 10.1128/mBio.00321-12.Google Scholar
Weiland, G., Rommel, M. and von Seyerl, F. (1979). Serological cross-reactions between Toxoplasma and hammondia. Zentralbl Bakteriol Orig A 244, 391393.Google Scholar
Weiss, L. M., LaPlace, D., Tanowitz, H. B. and Wittner, M. (1992). Identification of Toxoplasma gondii bradyzoite-specific monoclonal antibodies. Journal of Infectious Diseases 166, 213215.Google Scholar
Weiss, L. M., Ma, Y. F., Halonen, S., McAllister, M. M. and Zhang, Y. W. (1999). The in vitro development of Neospora caninum bradyzoites. International Journal for Parasitology 29, 17131723.Google Scholar
Williams, D. J., McGarry, J., Guy, F., Barber, J. and Trees, A. J. (1997). Novel ELISA for detection of Neospora-specific antibodies in cattle. Veterinary Record 140, 328331.Google Scholar
Wouda, W., Brinkhof, J., van Maanen, C., de Gee, A. L. and Moen, A. R. (1998). Serodiagnosis of neosporosis in individual cows and dairy herds: a comparative study of three enzyme-linked immunosorbent assays. Clinical and Diagnostic Laboratory Immunology 5, 711716.Google Scholar
Wyrosdick, H. M. and Schaefer, J. J. (2015). Toxoplasma gondii: history and diagnostic test development. Animal Health Research Reviews 16, 150162.Google Scholar
Yang, C. D., Chang, G. N. and Chao, D. (2004). Protective immunity against Toxoplasma gondii in mice induced by a chimeric protein rSAG1/2. Parasitology Research 92, 5864.Google Scholar
Ybanez, R. H., Terkawi, M. A., Kameyama, K., Xuan, X. and Nishikawa, Y. (2013). Identification of a highly antigenic region of subtilisin-like serine protease 1 for serodiagnosis of Neospora caninum infection. Clinical and Vaccine Immunology 20, 16171622.Google Scholar
Yin, J., Qu, G., Cao, L., Li, Q., Fetterer, R., Feng, X., Liu, Q., Wang, G., Qi, D., Zhang, X., Miramontes, E., Jenkins, M., Zhang, N. and Tuo, W. (2012). Characterization of Neospora caninum microneme protein 10 (NcMIC10) and its potential use as a diagnostic marker for neosporosis. Veterinary Parasitology 187, 2835.Google Scholar
Zhang, H., Compaore, M. K., Lee, E. G., Liao, M., Zhang, G., Sugimoto, C., Fujisaki, K., Nishikawa, Y. and Xuan, X. (2007 a). Apical membrane antigen 1 is a cross-reactive antigen between Neospora caninum and Toxoplasma gondii, and the anti-NcAMA1 antibody inhibits host cell invasion by both parasites. Molecular and Biochemical Parasitology 151, 205212.Google Scholar
Zhang, H., Lee, E. G., Liao, M., Compaore, M. K., Zhang, G., Kawase, O., Fujisaki, K., Sugimoto, C., Nishikawa, Y. and Xuan, X. (2007 b). Identification of ribosomal phosphoprotein P0 of Neospora caninum as a potential common vaccine candidate for the control of both neosporosis and toxoplasmosis. Molecular and Biochemical Parasitology 153, 141148.Google Scholar
Zhang, H., Lee, E. G., Yu, L., Kawano, S., Huang, P., Liao, M., Kawase, O., Zhang, G., Zhou, J., Fujisaki, K., Nishikawa, Y. and Xuan, X. (2011). Identification of the cross-reactive and species-specific antigens between Neospora caninum and Toxoplasma gondii tachyzoites by a proteomics approach. Parasitology Research 109, 899911.Google Scholar
Figure 0

Table 1. Immunodominant bands recognized by Neospora caninum-infected or immunized animals in tachyzoite antigen

Figure 1

Table 2. Neospora caninum-recombinant antigens and cross-reactions tested against Toxoplasma gondii and related protozoan parasites

Figure 2

Table 3. Cross-reactions tested for Neospora caninum in published in-house ELISAs