Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T21:15:17.516Z Has data issue: false hasContentIssue false

Immunolocalization of Taenia solium gap junction innexins

Published online by Cambridge University Press:  14 July 2008

R. ZURABIAN
Affiliation:
Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México D.F.
A. LANDA
Affiliation:
Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México D.F.
L. ROBERT
Affiliation:
Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México D.F.
K. WILLMS*
Affiliation:
Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México D.F.
*
*Corresponding author: Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Edificio A, Primer Piso, Ciudad Universitaria, México 04510, D.F. México. Tel: +5255 5623 2356/87. Fax. +5255 5623 2382. E-mail: [email protected]

Summary

In previous studies, ultrastructural observations revealed a large number of gap junctions (GJs) in the neck and immature proglottid tissues of Taenia solium tapeworms. In these helminths, cytoplasmic glycogen sacs are connected by numerous discrete GJs to other cells throughout the maturing strobilar tissue. Discontinuous sucrose gradients were used to purify membrane fractions containing GJs, which were identified by ultrastructural analysis. A trans-membrane peptide sequence from a highly conserved innexin region was used to construct a 20-amino acid synthetic peptide and used to raise polyclonal antibodies in rabbits that recognized both a 55 and a 67 kDa protein in a Western blot of the GJ-enriched pellet. Immunohistochemistry of larval and adult worm sections incubated with antiserum to the synthetic peptide and a secondary anti-rabbit IgG bound to fluorescein, revealed strong binding to the tegumentary surface of the worm, as well as patchy fluorescent areas in the parenchyma. The results indicate that both the tegument of cysticerci and adult T. solium contain innexin-rich membranes, which may function as a tegumentary transport system for small molecules.

Type
Original Articles
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bao, L., Samuels, S., Locovei, S., Macagno, E. R., Muller, K. J. and Dahl, G. (2007). Innexins form two types of channels. FEBS Letters 581, 57035708. doi:10.1016/j.febslet.2007.11.030.CrossRefGoogle ScholarPubMed
Baranova, A., Ivanov, D., Petrash, N., Pestota, A., Skoblov, M., Kelmanson, I., Shagin, D., Nazarenko, S., Geraymovych, E., Litvin, O., Tiunova, A., Born, T. L., Usman, N., Staroverov, D., Lukyanov, S. and Panchin, Y. (2004). The mammalian pannexin family is homologous to the invertebrate innexin gap-junction proteins. Genomics 83, 706716. doi:10.1016/j.ygeno.2003.09.025.CrossRefGoogle Scholar
Bauer, R., Lehmann, C., Martini, J., Eckardt, F. and Hoch, M. (2004). Gap junction channel protein innexin 2 is essential for epithelial morphogenesis in the Drosophila embryo. Molecular Biology of the Cell 15, 29923004. doi:10.1091/mbc.E04-01-0056.CrossRefGoogle ScholarPubMed
Burns, A. J., Howard, C. V., Allen, J. M., Van Velsen, D. and McKerr, G. (1995). Stereological estimation of gap junction surface area per neuron in the developing nervous system of the invertebrate. Mesocestoides corti. Parasitology 111, 505513.CrossRefGoogle Scholar
Cornford, E. M. (1990). Glucose utilization rates are linked to the internal free glucose gradient in the rat tapeworm. Experimental Parasitology 70, 2334.CrossRefGoogle Scholar
Dahl, G. and Locovei, S. (2006). Pannexin: to gap or not to gap, is that a question? IUBMB Life 58, 409419. doi:10.1080/15216540600794526.CrossRefGoogle ScholarPubMed
Dykes, I. M. and Macagno, E. R. (2006). Molecular characterization and embryonic expression of innexins in the leech Hirudo medicinalis. Development Genes and Evolution 216, 185197. doi:10.1007/s00427-005-0048-1.CrossRefGoogle ScholarPubMed
Elias, L. A. B., Wang, D. D. and Kriegstein, A. R. (2007). Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448, 901907. doi:10.1038/nature06063907.CrossRefGoogle ScholarPubMed
Goodenough, D. A., Goliger, J. A. and Paul, D. L. (1996). Connexins, connexons, and intercellular communication. Annual Reviews in Biochemistry 65, 475502.CrossRefGoogle ScholarPubMed
Hervé, J. C., Bourmeyster, N., Sarrouilhe, D., Duffy, H. S. (2007). Gap junctional complexes: From partners to functions. Progress in Biophysics and Molecular Biology 94, 2965. doi:10.1016/jpbiomolbio.2007.03.019.CrossRefGoogle ScholarPubMed
Karnovsky, M. J. (1965). A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology 27, 137A.Google Scholar
Laemmli, U. K. (1979). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680685.CrossRefGoogle Scholar
Lumsden, R. D. and Hildreth, M. B. (1983). The fine structure of adult tapeworms. In Biology of the Eucestoda (ed. Arme, C. and Pappas, P.), vol. 1, pp. 177233. Academic Press, London, UK.Google Scholar
Nogi, T. and Levin, M. (2005). Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. Developmental Biology 287, 314335. doi:10.1016/j.ydbio.2005.09.002.CrossRefGoogle ScholarPubMed
Oviedo, N. and Levin, M. (2007). Smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis. Development 134, 31213131. doi:10.1242/dev.006635.CrossRefGoogle ScholarPubMed
Potenza, N., del Gaudio, R., Rivieccio, L., Russo, G. M., Geraci, G. (2002). Cloning and molecular characterization of the first innexin of the Phylum annelida-expression of the gene during development. Journal of Molecular Evolution 54, 312321.CrossRefGoogle ScholarPubMed
Panchin, Y., Kelmanson, I., Matz, M., Lukyanov, K., Usman, N. and Lukyanov, S. (2000). A ubiquitous family of putative gap junction molecules. Current Biology 10, R473R474.CrossRefGoogle ScholarPubMed
Panchin, Y. V. (2005). Evolution of gap-junction proteins – the pannexin alternative. Journal of Experimental Biology 208, 14151419. doi:10.1242/jeb.0157.CrossRefGoogle ScholarPubMed
Phelan, P. (2005). Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochimica et Biophysica Acta 1711, 225245. doi:10.1016/j.bbamem.2004.10.004.CrossRefGoogle ScholarPubMed
Richards, K. S. and Arme, C. (1983). Junctional complexes on the inner cyst tissue of the cysticercoid of Hymenolepis diminuta (Cestoda). Parasitology 87, 295306.CrossRefGoogle ScholarPubMed
Rodríguez-Contreras, D., Skelly, P. J., Landa, A., Shoemaker, C. B. and Laclette, J. P. (1998). Molecular and functional localization of 2 glucose transporter homologues (TGTP1 and TGTP2) from the tapeworm Taenia solium. Parasitology 117, 579588.CrossRefGoogle ScholarPubMed
Ryerse, J. S. (1989). Isolation and characterization of gap junctions from Drosophila melanogaster. Cell Tissue Research 256, 716.CrossRefGoogle ScholarPubMed
Sato, T., Haimovici, R., Kao, R., Li, A. F. and Roy, S. (2002). Downregulation of connexin 43 expression by high glucose reduces gap junction activity in microvascular endothelial cells. Diabetes 51, 15651571.CrossRefGoogle ScholarPubMed
Shestopalov, V. I. and Panchin, Y. (2008). Pannexins and gap junction protein diversity. Cellular and Molecular Life Sciences 65, 376394. doi:10.1007s00018-007-7200-1.CrossRefGoogle ScholarPubMed
Simon, A. and Goodenough, D. A. (1998). Diverse functions of vertebrate gap junctions. Trends in Cellular Biology 8, 477483.CrossRefGoogle ScholarPubMed
Smyth, J. D. and McManus, D. P. (1989). The adult cestode: special structural features relevant to its physiology. In Physiology and Biochemistry of Cestodes (ed. Smyth, J. D. and McManus, D. P.), pp. 515. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Starich, T., Sheehan, M., Jadrich, J. and Shaw, J. (2001). Innexins in C. elegans. Cell Communication and Adhesion 8, 46. doi:1061-5385/01.CrossRefGoogle ScholarPubMed
Willms, K., Robert, L. and Caro, J. A. (2003). Ultrastructure of smooth muscle, gap junctions and glycogen distribution in Taenia solium tapeworms from experimentally infected hamsters. Parasitology Research 89, 308316. doi:10.1007/s00436-002-0733-1.CrossRefGoogle ScholarPubMed
Willms, K., Fernández Presas, A. M., Jiménez, J. A., Landa, A., Zurabian, R., Juárez Ugarte, M. E. and Robert, L. (2005). Taeniid tapeworm responses to in vitro glucose. Parasitology Research 96, 296301. doi:10.1007/s00436-005-1348-0.CrossRefGoogle ScholarPubMed