Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T05:33:37.541Z Has data issue: false hasContentIssue false

Identification and properties of a neuropeptide-degrading endopeptidase (neprilysin) of Ascaris suum muscle

Published online by Cambridge University Press:  06 April 2009

M. Sajid
Affiliation:
Department of Pure and Applied Biology, University of Leeds, Leeds LS2 9JT
R. E. Isaac
Affiliation:
Department of Pure and Applied Biology, University of Leeds, Leeds LS2 9JT

Summary

We have previously identified in membranes of the locomotory muscle of Ascaris suum a phosphoramidon-sensitive endopeptidase which hydrolyses the neuropeptide AF1 (Lys-Asn-Glu-Phe-Ile-Arg-Phe-NH2) by cleavage of the Glu3-Phe4 bond (Sajid & Isaac, 1994). We have determined the properties of this neuropeptide-degrading enzyme of A. suum muscle using AKH-I (ρGlu-Leu-Asn-Phe-Thr-Pro-Asn-Trp-Gly-Thr-NH2) and [D-Ala2, Leu5]enkephalin as convenient endopeptidase substrates. Phosphoramidon, thiorphan and SQ 28603, potent inhibitors of mammalian neprilysin (neutral endopeptidase, endopeptidase 24.11), inhibited the endopeptidase activity towards AKH-I with IC50 values of 0·13 μM, 22 μM and 6·3 μM, respectively. Two other neprilysin inhibitors (SCH 32615 and SCH 39370) and the bivalent metal ion chelators, EDTA (1 mM) and 1, 10 bis-phenanthroline (1 mM) failed to inhibit the nematode enzyme. The endopeptidase had a neutral pH optimum and a significant proportion (45%)of the enzyme activity partitioned into the detergent-rich phase of Triton X-114, indicating that the enzyme is an integral membrane protein. The muscle enzyme also attacked [D-Ala2, Leu5]enkephalin cleaving the Gly3-Phe4 bond and this hydrolytic activity was inhibited by phosphoramidon and thiorphan (IC50, 0·28 ρM and 15·8 ρM, respectively) but not by EDTA and 1,10 bis-phenanthroline. The phosphoramidon-sensitive endopeptidase activity was detected on intact muscle cells prepared by collagenase treatment of the body wall musculature, indicating that endopeptidase is accessible to peptide molecules that interact with the cell surface.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atkinson, H. J., Isaac, R. E., Harris, P. D. & Sharp, C. M. (1988). FMRFamide-like immunoreactivity within the nervous system of the nematodes Panagrellus redivivus, Caenorhabditis elegans and Heterodera gylcines. Journal of Zoology 216, 663–71.CrossRefGoogle Scholar
Bawab, W., Querido, E., Crines, P. & Desgroseillers, L. (1992). Identification and characterisation of aminopeptidases from Aplysia californica. The Biochemical Journal 286, 967–75.CrossRefGoogle ScholarPubMed
Bawab, W., Aloyz, S., Crines, P., Roques, B. P. & Desgroseillers, L. (1993). Identification and characterisation of a neutral endopeptidase activity in Aplysia californica. The Biochemical Journal 296, 459–65.CrossRefGoogle ScholarPubMed
Bordier, C. (1981). Phase separation of integral membrane bound proteins in Triton X-114 solution. Journal of Biological Chemistry 256, 1604–7.CrossRefGoogle Scholar
Cowden, C., Sithigorgul, P., Brackley, P., Guastella, J. & Stretton, A. O. W. (1993). Localization and differential expression of FMRFamide-like immunoreactivity in the nematode Ascaris suum. Journal of Comparative Neurology 333, 455–68.CrossRefGoogle ScholarPubMed
Cowden, S. & Stretton, A. O. W. (1993). AF2, an Ascaris neuropeptide: isolation, sequence, and bioactivity. Peptides 14, 423–30.CrossRefGoogle ScholarPubMed
Cowden, S., Stretton, A. O. W. & Davies, R. E. (1989). AF1, a sequenced bioactive neuropeptide isolated from the nematode Ascaris suum. Neuron 2, 1465–73.CrossRefGoogle ScholarPubMed
Davenport, T. R, Isaac, R. E. & Lee, D. L. (1988). Immunocytochemical demonstration of a neuropeptide in Ascaris suum (Nematoda) using an antiserum to FMRFamide. Parasitology 97, 81–8.CrossRefGoogle ScholarPubMed
Davenport, T. R., Isaac, R. E. & Lee, D. L. (1991). The presence of peptides related to the Adipokinetic Hormone/Red Pigment-Concentrating Hormone family in the nematode, Panagrellus redivivus. General and Comparative Endocrinology 81, 419–25.CrossRefGoogle Scholar
Erdös, E. G & Skidgel, R. A. (1989). Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. FASEB Journal 3, 145–51.CrossRefGoogle ScholarPubMed
Franks, C. J., Holden-Dye, L. & Walker, R. J. (1993). A nematode peptide Ser-Asp-Pro-Asn-Phe-Leu-Arg-Phe-NH2, (PF1), inhibits synaptic transmission in the parasitic nematode Ascaris suum. Journal of Physiology 473, 239.Google Scholar
Franks, C. J, Holden-Dye, L., Williams, D. G., Pang, F. Y. & Walker, R. J. (1994). A nematode FMRFamide-like peptide, SDPNFLRFamide (PF1), relaxes the dorsal muscle strip preparation of Ascaris suum. Parasitology 108, 229–36.CrossRefGoogle ScholarPubMed
Geary, T. G., Klein, R. D., Vanover, L., Bowman, J. W. & Thompson, D. P. (1992). The nervous system of helminths as a target for drugs. Journal of Parasitology 78, 215–30.CrossRefGoogle ScholarPubMed
Gee, N. S. & Kenny, A. J. (1989). Proteins of the kidney microvillar membrane. Enzymic and molecular properties of aminopeptidase W. The Biochemical Journal 246, 97102.CrossRefGoogle Scholar
Isaac, R. E. (1988). Neuropeptide-degrading endopeptidase activity of locust (Schistocerca gregaria) synaptic membranes. The Biochemical Journal 255, 843–7.CrossRefGoogle ScholarPubMed
Iverson, L. L. (1987). Overview: Peptides in the nervous system. In Neuropeptides and their Peptidases (ed. Turner, A. J.), pp. 38. Ellis Horwood Series, Ellis Horvvood, Weinheim: Chichester/VCH.Google Scholar
Joose, J. & Geraerts, W. P. M. (1989). Neuropeptides: Unity and diversity, a molecular approach. In Insect Neurochemistry and Neurophysiology (ed. Borkovec, A. B. & Masler, E. P.) pp. 337, Clifton, New Jersey: The Humana Press Inc.Google Scholar
Katayama, M., Nadel, J. A., Bunnett, N. W., Dimaria, G. U., Haxhiu, M. & Borsden, D. B. (1991). Catabolism of calcitonin gene-related peptide and substance-P by neutral endopeptidase. Peptides 12, 563–7.CrossRefGoogle ScholarPubMed
Keely, L. L., Hayes, T. K. & Bradfield, J. Y. (1989). Insect neuroendocrinology: its past; its present; future opportunities. In Insect N eurochemistry and Neurophysiology (ed. Borkovec, A. B. & Masler, E. P.), pp. 163203. Clifton, New Jersey: The Humana Press Inc.Google Scholar
Kenny, A. J. & Hooper, N. M. (1991). Peptidases involved in the metabolism of bioactive peptides. In Degradation of Bioactive Substances: Physiology and Pathophysiology (ed. Henriksen, J. H.), pp. 4779. Boca Raton, Florida: CRC Press.Google Scholar
Lamango, N. S. & Isaac, R. E. (1993). Metabolism of insect neuropeptides: properties of a membrane-bound endopeptidase from heads of Musca domestica. Insect Biochemistry and Molecular Biology 23, 801–8.CrossRefGoogle ScholarPubMed
Leach, L., Trudgill, D. L. & Gahan, P. B. (1987). Immunocytochemical localisation of neurosecretory amines and peptides in the free living nematode, Goodyus ulmi. Histochemical Journal 19, 471–5.CrossRefGoogle ScholarPubMed
Llorens-C., C., Huang, H., Vicart, P., Gasc, J. M., Paulin, D. & Corvol, P. (1992). Identification of neutral endopeptidase in endothelial cells from venous or arterial origins. Journal of Biological Chemistry 267, 14012–18.CrossRefGoogle Scholar
Lotvall, J. O., Tokuyama, K., Barnes, P. J. & Chuxg, H. F. (1991). Bradykinin-induced airway microvascular leakage is potentiated by captopril and phosphoramidon. European Journal of Pharmacology 200, 211–17.CrossRefGoogle ScholarPubMed
Maule, A. G., Shaw, C., Bowman, J. W., Halton, D. W., Thompson, D. W., Geary, T. G. & Thim, L. (1994). KSAYMRFamide-a novel FMRFamide-related heptapeptide from the free living nernatode Panagrellus redivivus, which is myoactive in the parasitic nematode, Ascaris suum. Biochemical and Biophysical Research Communications 200, 973–80.CrossRefGoogle ScholarPubMed
McKelvy, J. F. & Blumberg, S. (1986). Inactivation and metabolism of neuropeptides. Annual Review of Neuroscience 9, 415–34.CrossRefGoogle ScholarPubMed
Nyberg, F. & Terenius, L. (1991). Enzymatic inactivation of neuropeptides. In Degradation of Bioactive Substances: Physiology and Pathophysiology (ed Henriksen, J. H.) pp. 189200. Boca Raton, Florida: CRC Press.Google Scholar
Ohnaka, K., Takayanagi, R., Nishikawa, M., Haji, M. & Nawata, H. (1993). Purification and characterisation of a phosphoramidon-sensitive endothelin converting enzyme in porcine aortic endothelium. Journal of Biological Chemistry 268, 26759–66.CrossRefGoogle ScholarPubMed
Opgenorth, T. J., Wu-Wong, J. R. & Shiosaki, K. (1992). Endothelin converting enzymes. FASEB Journal 6, 2653–9.CrossRefGoogle ScholarPubMed
Painter, R. G. (1991). Inhibition of neutrophil NEP by phosphoramidon blocks recycling of formyl-Met-Leu-Phe receptors. FASEB Journal 5, A1352.Google Scholar
Rosoff, M. L., Burglin, T. R. & Li, C. (1992). Alternatively spliced transcripts of the flp-1 gene encode distinct FMRFamide-like peptides in Caenorhabditis elegans. Journal of Neuroscience 12, 2356–61.CrossRefGoogle ScholarPubMed
Rosoff, M. L., Doble, K. E., Price, D. A. & Li, C. (1983). The flp-1 propeptide is processed into a multiple, highly similar FMRFamide-like peptides in Caenorhabditis elegans. Peptides 14, 331–8.CrossRefGoogle Scholar
Sajid, M. (1994). The metabolism of neuropeptides in Ascaris suum (Nematoda: Ascaroidea). Ph.D. thesis, Department of Pure and Applied Biology, University of Leeds.Google Scholar
Sajid, M. & Isaac, R. E. (1994). Metabolism of AF1 (Lys-Asn-Glu-Phe-Ile-Arg-Phe-NH2 in the nematode, Ascaris suum. Biochemical Society Transactions 22, 293S.CrossRefGoogle ScholarPubMed
Schinkmann, K. & Li, C. (1992). Localisation of FMRFamide-like peptides in Caenorhabditis elegans. Journal of Comparative Neurology 316, 251–60.CrossRefGoogle ScholarPubMed
Stephenson, S. L. & Kenny, A. J. (1987). The hydrolysis of a-human atrial natriuretic peptide by pig kidney microvillar membranes is initiated by endopeptidase-24.11. The Biochemical Journal 243, 183–7.CrossRefGoogle Scholar
Stretton, A. O. W., Donmoyer, J. E., Davis, R. E., Meade, J. A., Cowden, C. & Sithigorngul, P. (1992). Motor behaviour and motor nervous system function in the nematode, Ascaris suum. Journal of Parasitology 78, 206–14.CrossRefGoogle ScholarPubMed
Stretton, A. O. W., Cowden, C., Sithigorngul, P. & Davies, R. E. (1991). Neuropeptides in nematode Ascaris suum. Parasitology 102, S107–S116.CrossRefGoogle ScholarPubMed
Thorsett, E. D. & Wyvratt, M. J. (1987). Inhibition of zinc peptidases that hydrolyse neuropeptides. In Neuropeptides and their Peptidases, (ed. Turner, A. J.) pp. 229284. Weinheim: Ellis Horwood Series Chichester/VCH.Google Scholar
Turner, A. J. (1987). Endopeptidase 24.11 and neuropeptide metabolism. In Neuropeptides and their Peptidases (ed. Turner, A. J.) pp. 183201. Weinheim: Ellis Horwood Series Chichester/VCH.Google Scholar
Turner, A. J. & Dowdall, M. J. (1984). The metabolism of neuropeptides: both phosphoramidon-sensitive and captopril-sensitive metallopeptidases are present in the electric organ of Torpedo marmorata. The Biochemical Journal 222, 255–9.CrossRefGoogle Scholar
Turner, A. J., Hooper, N. M. & Kenny, A. J. (1989). Neuropeptide degrading enzymes. In Neuropeptides a Methodology (ed. Fink, G. & Harmer, A. J.) pp. 189223. Amsterdam: Elsevier.Google Scholar
Umezawa, H. (1972). A new microbial metabolite, phosphoramidon (isolation and structure). Tetrahedron Letters 1, 97100.CrossRefGoogle Scholar
Xu, D., Emoto, N., Glaid, A., Slaughter, C., Kaw, S., Dewit, D. & Yanagisawa, M. (1994). ECE-1: a membrane-bound metallopeptidase that catalyses the proteolytic activation of big-endothelin-1. Cell 78, 473–85.CrossRefGoogle Scholar