Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-18T18:13:06.189Z Has data issue: false hasContentIssue false

Identification and in situ and in vitro characterization of secreted proteins produced by plant-parasitic nematodes

Published online by Cambridge University Press:  06 April 2009

R. H. C. Curtis
Affiliation:
Entomology and Nematology Department, IACR Rothamsted, Harpenden, Herts AL5 2JQ, UK

Summary

Secretions of plant-parasitic nematodes which are released into plant tissue may play critical roles in plant-nematode interactions. The identification and characterization of these molecules are of fundamental importance and may help to facilitate the development of novel strategies to interfere with nematode infection of plants and thereby decrease nematode-induced damage to crops. An antibody-based approach was used to isolate molecules present on the nematode surface and in nematode secretions. Monoclonal antibodies (MAbs) were produced to secretions and to whole Heterodera avenue 2nd-stage juveniles; several of these MAbs recognized molecules present in nematode secretions produced in vitro. Three of these molecules have been partly characterized in H. avenae, Globodera rostochiensis, G. pallida and Meloidogyne incognita. A MAb reacting with the surfaces of these nematodes recognized antigens of different molecular weight in each of the species tested. This difference in antigenicity might be related to specific functions in these nematodes. Preliminary results show that this antibody also localized the antigen in root cells surrounding the feeding site induced by M. incognita in Arabidopsis thaliana.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aumann, J., Robertson, W. M. & Wyss, U. (1991). Lectin binding to cuticle exudates of sedentary Heterodera schachtii second stage juveniles. Revue de Nematologie 14, 113118.Google Scholar
Bird, A. (1962). The inducement of giant cells by Meloidogyne javanica. Nematologica 8, 110.Google Scholar
Bird, A. F. (1984). Growth and moulting in nematodes: moulting and development of the hatched larva of Rotylenchus reniformis. Parasitology 89, 107119.Google Scholar
Bird, D. M. (1992). Mechanisms of the Meloidogyne-host interaction. In Nematology: from Molecule to Ecosystem (ed. Gommers, F. & Maas, P. W. T.), pp. 5159. European Society of Nematology, Dundee.Google Scholar
Bird, D. M. & Wilson, M. A. (1994). Molecular and cellular dissection of giant cell function. In Advances in Molecular Plant Nematology (ed. Lamberti, F., Giorgi, C. & Bird, D. M.), pp. 181195. NATO Advanced Science Institutes Series.CrossRefGoogle Scholar
Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle Scholar
Braun, D. M. & Walker, J. C. (1996). Plant membrane receptors: new pieces in the signalling puzzle. Trends in Biochemical Sciences 21, 7073.Google Scholar
Clarke, A. E., Anderson, M. A., Bacic, T., Harris, P. J. & Mau, S. L. (1985). Molecular basis of cell-recognition during fertilization in higher plants. Journal of Cell Science 2, 261285.Google Scholar
Curtis, R. H. C., Bendezu, I. F. & Evans, K. (1996). Identification of a putative actin in the two species of PCN using a monoclonal antibody. Fundamental and Applied Nematology (in the Press).Google Scholar
Daly, J. M. (1984). The role of recognition in plant disease. Annual Review of Phytopathology 22, 273307.CrossRefGoogle Scholar
Davis, E. L., Allen, R. & Hussey, R. S. (1994). Developmental expression of oesophageal gland antigens and their detection in stylet secretions of Meloidogyne incognita. Fundamental and Applied Nematology 17, 255262.Google Scholar
Endo, B. Y. (1978). Feeding plug formation in soybean roots infected with the soybean cyst nematode. Phytopathology 68, 10221031.Google Scholar
Endo, B. Y. (1980). Ultrastructure of the anterior neurosensory organs of the larvae of the soybean cyst nematode Heterodera glycines. Journal of Ultrastructure Research 72, 349366.CrossRefGoogle ScholarPubMed
Endo, B. Y. (1993). Ultrastructure of cuticular exudates and related cuticular changes in juveniles of Heterodera glycines. Journal of the Helminthology Society Washington 60, 7688.Google Scholar
Endo, B. Y. & Wyss, u (1992). Ultrastructure of cuticular exudations in parasitic juvenile Heterodera schachtii as related to cuticle structure. Protoplasma 166, 6777.CrossRefGoogle Scholar
Forrest, J. M. S., Spiegel, Y. & Robertson, W. M. (1988). A possible role for the amphids of potato cyst nematode Globodera rostochiensis in host finding. Nematologica 34, 173181.Google Scholar
Galfre, G. & Milstein, C. (1981). Preparation of monoclonal antibodies: strategies and procedures. Methods in Enzymology 73, 146.Google ScholarPubMed
Goverse, A., Davis, E. L. & Hussey, R. S. (1994). Monoclonal antibodies to the oesophageal glands and stylet secretions of Heterodera glycines. Journal of Nematology 26, 251259.Google Scholar
Grundler, F. M. W., Bockenhoff, A., Schmidt, K. P., Sobczak, M., Golinowski, W. & Wyss, U. (1994). Arabidopsis thaliana and Heterodera schachtii: a versatile model to characterise the interaction between host plants and cyst nematodes. In Advances in Molecular Plant Nematology (ed. Lamberti, F., Giorgi, C. & Bird, D. M.), pp. 171180. NATO Advanced Science Institutes Series.CrossRefGoogle Scholar
Hussey, R. S. (1989). Disease-inducing secretions of plant-parasitic nematodes. Annual Review of Phytopathology 27, 123141.Google Scholar
Jones, M. G. K. (1981). Host cell responses to endoparasitic nematode attack: structure and function of giant cells and syncytia. Annals of Applied Biology 97, 353372.Google Scholar
Jones, J. T., Perry, R. N. & Johnston, M. R. L. (1993). Changes in the Ultrastructure of the cuticle of potato cyst nematode, Globodera rostochiensis, during development and infection. Fundamental and Applied Nematology 16, 433445.Google Scholar
Kaplan, D. T. & Davis, E. L. (1987). Mechanisms of plant incompatibility with nematodes. In Vistas on Nematology (ed. Veech, J. A. & Dickson, D. W.), pp. 267276. Society of Nematologists Inc., Hyattsville, Maryland.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680685.Google Scholar
Lindgren, P. B., Jacobeck, J. L. & Smith, J. A. (1992). Molecular analysis of plant defense responses to plant pathogen. Journal of Nematology 24, 330337.Google Scholar
McClure, M. A., Misaghi, I. & Nigh, E. L. (1973). Shared antigens of parasitic nematodes and host plants. Nature, London 244, 306.Google Scholar
McClure, M. A. & Von Mends, N. (1987). Induced salivation in plant-parasitic nematodes. Phytopathology 77, 14631469.Google Scholar
Opperman, C. H., Taylor, C. & Conkling, M. A. (1994). Root-knot nematode-directed expression of a plant root-specific gene. Science 263, 221223.CrossRefGoogle ScholarPubMed
Overath, P., Chaudhiri, M., Steverding, D. & Ziegelbauer, K. (1994). Invariant surface proteins in bloodstream forms of Trypanosoma brucei. Parasitology Today 10, 5358.Google Scholar
Perry, R. N. (1994). Studies on nematode sensory perception as a basis for novel control strategies. Fundamental and Applied Nematology 17, 199203.Google Scholar
Parkhouse, R. M. E. & Ortega-pierres, O. (1984). Stage-specific antigens of Trichinella spiralis. Parasitology 88, 623630.CrossRefGoogle ScholarPubMed
Philipp, M. & Rumjaneck, F. D. (1984). Antigenic and dynamic properties of helminth surface structures. Molecular and Biochemical Parasitology 10, 245268.CrossRefGoogle ScholarPubMed
Robinson, M. P., Butcher, G., Curtis, R. H. C., Davies, K. D. & Evans, K. (1993). Characterisation of a 34 kD protein from potato cyst nematodes, using monoclonal antibodies with potential for species diagnosis. Annals of Applied Biology 123, 337347.CrossRefGoogle Scholar
Sijmons, P. C., Grundler, F. M. W., Von Mende, N., Burrows, P. R. & Wyss, U. (1991). Arabidopsis thaliana as a new model host for plant parasitic nematodes. Plant Journal 1, 245254.CrossRefGoogle Scholar
Stewart, G. R., Perry, R. N., Alexander, J. & Wright, D. J. (1993 a). A glycoprotein specific to the amphids of Melodoigyne species. Parasitology 106, 406412.CrossRefGoogle Scholar
Stewart, G. R., Perry, R. N. & Wright, D. J. (1993 b). Studies on the amphid specific glycoprotein gp32 in different life-cycle stages of Meloidogyne species. Parasitology 107, 573578.CrossRefGoogle Scholar
Van Der Eycken, W., Engler, J. A., Inze, D., Van Montagu, M. & Gheysen, G. (1996). A molecular study of root-knot nematode-induced feeding sites. The Plant Journal 9, 4554.CrossRefGoogle ScholarPubMed
Wergin, W. P. & Endo, B. Y. (1976). Ultrastructure of a neurosensory organ in a root knot nematode. Journal of Ultrastructure Research 56, 258276.CrossRefGoogle Scholar
Willats, W. G. T., Atkinson, H. J. & Perry, R. N. (1995). The immunofluorescent localisation of subventral pharyngeal gland epitopes of preparasitic juveniles of Heterodera glycines using laser scanning confocal microscopy. Journal of Nematology 27, 135142.Google Scholar
Zuckerman, B. M. & Jansson, H. B. (1984). Nematode chemotaxis and possible mechanisms of host/prey recognition. Annual Review of Phytopathology 22, 95113.Google Scholar