Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T00:44:15.976Z Has data issue: false hasContentIssue false

Hypothesis: impaired immunity as a factor which contributes to the spread of drug-resistance

Published online by Cambridge University Press:  06 April 2009

M. J. Doenhoff
Affiliation:
1School of Biological Sciences, University College of North Wales, Bangor, Gwynedd LL57 2UW, UK
A. J. S. Davies
Affiliation:
281 Queens Road, Wimbledon, London SW19 8NR, UK

Summary

Evidence has accrued to indicate that host defence mechanisms enhance the efficacy of many of the drugs used to treat infectious diseases. Because of this, and also because of the likelihood of increased pathogen loads in immunoincompetent hosts, some infections are less likely to be completely cured by normal regimens of chemotherapy in individuals with drastically impaired immune responsiveness. In such circumstances natural selection could result in the accelerated emergence of drug-resistant pathogens.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bjorkman, A. (1988). Interactions between chemotherapy and immunity to malaria. In Malaria Immunology (ed. Perlmann, P. & Wigzell, H.), pp. 331–56. Basel: Karger.CrossRefGoogle Scholar
Bjorkman, A. (1991). Drug resistance — changing patterns. In Malaria: Waiting for the Vaccine. (ed. Targett, G. A. T.), pp. 105–20. Chichester: John Wiley & Sons.Google Scholar
Carter, R. L., Connors, T. A., Weston, B. J. & Davies, A. J. S. (1973). Treatment of a mouse lymphoma by Lasparaginase: success depends on the host's immune response. International Journal of Cancer 11, 345–57.CrossRefGoogle ScholarPubMed
Cohen, M. L. (1992). Epidemiology of drug-resistance: implications for a post-antimicrobial era. Science 257, 1050–5.CrossRefGoogle ScholarPubMed
Edlin, B. R., Tokars, J. I., Grieco, M. H., Crawford, J. T., Williams, J., Sordillo, E. M., Ong, K. R., Kilburn, J. O., Dooley, S. W., Castro, K. G., Jarvis, W. R. & Holmberg, S. D. (1992). An outbreak of multidrug-resistance among hospitalized patients with the acquired immunodeficiency syndrome. New England Journal of Medicine 326, 1514–21.CrossRefGoogle ScholarPubMed
Follath, F., Costa, E., Thommen, A., Frei, R., Burdeska, A. & Meyer, J. (1987). Clinical consequences of development of resistance to third-generation cephalosporins. European Journal of Clinical Microbiology 6, 446–50.CrossRefGoogle ScholarPubMed
Frommel, T. O. (1988). Trypanosoma brucei rhodesiense: effect of immunosuppression on the efficacy of melarsoprol treatment of infected mice. Experimental Parasitology 67, 364–6.CrossRefGoogle ScholarPubMed
Greenwood, B. M., Bradley-Moore, A. M., Palit, A. & Bryceson, A. D. M. (1972). Immunosuppression in children with malaria. Lancet 1, 169–72.CrossRefGoogle ScholarPubMed
Hayes, J. D. & Wolf, C. R. (1990). Molecular mechanisms of drug resistance. Biochemical Journal 272, 281–95.CrossRefGoogle ScholarPubMed
Jacoby, G. A. & Archer, G. L. (1991). New mechanisms of bacterial resistance to antimicrobial agents. New England Journal of Medicine 324, 601–12.Google ScholarPubMed
Jancso, N. Von & Jancso, H. Von (1935). The role of the natural defence forces in the evolution of drug-resistance. II. The rapid production of Germanin-fast T. brucei strains in animals with paralysed defence. Annals of Tropical Medicine and Parasitology 29, 95109.CrossRefGoogle Scholar
Karcz, S. & Cowman, A. F. (1991). Similarities between the multidrug resistance phenotype of mammalian tumor cells and chloroquine resistance in Plasmodium falciparum. Experimental Parasitology 73, 233–40.CrossRefGoogle ScholarPubMed
Lwin, M., Targett, G. A. T. & Doenhoff, M. J. (1987). Reduced efficacy of chemotherapy of Plasmodium chabaudi in T-cell deprived mice. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 899902.CrossRefGoogle Scholar
Murray, B. E. (1991). New aspects of antimicrobial resistance and the resulting therapeutic dilemmas. Journal of Infectious Diseases 163, 1185–94.CrossRefGoogle ScholarPubMed
Neu, H. C. (1992). The crisis in antibiotic resistance. Science 257, 1064–73.CrossRefGoogle ScholarPubMed
Osman, A. S., Jennings, F. W. & Holmes, P. H. (1992). The rapid development of drug-resistance by Trypanosoma evansi in immunosuppressed mice. Acta Tropica 50, 249–57.CrossRefGoogle ScholarPubMed
Pitchenik, A. E., Burr, J., Laufer, M., Miller, G., Cacciatore, R., Bigler, W. J., Whitte, J. J. & Cleary, T. (1990). Outbreaks of drug-resistant tuberculosis at AIDS centre. Lancet 336, 440–1.CrossRefGoogle ScholarPubMed
Schnitzer, R. S., Lafferty, L. C. & Buck, M. (1946). The role of antibodies in experimental drug resistance of Trypanosoma equiperdum. Journal of Immunology 54, 4757.CrossRefGoogle ScholarPubMed
Targett, G. A. T. (1993). Malaria: drug use and the immune response. Parasitology 105, S61S70.CrossRefGoogle Scholar
Wernsdorfer, W. H. (1991). The development and spread of drug-resistant malaria. Parasitology Today 7, 297303.CrossRefGoogle ScholarPubMed