Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T18:15:43.391Z Has data issue: false hasContentIssue false

Host traits explain the genetic structure of parasites: a meta-analysis

Published online by Cambridge University Press:  18 July 2013

ISABEL BLASCO-COSTA*
Affiliation:
Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic
ROBERT POULIN
Affiliation:
Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand
*
*Corresponding author. Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand. E-mail: [email protected]

Summary

Gene flow maintains the genetic integrity of species over large spatial scales, and dispersal maintains gene flow among separate populations. However, body size is a strong correlate of dispersal ability, with small-bodied organisms being poor dispersers. For parasites, small size may be compensated by using their hosts for indirect dispersal. In trematodes, some species use only aquatic hosts to complete their life cycle, whereas others use birds or mammals as final hosts, allowing dispersal among separate aquatic habitats. We performed the first test of the universality of the type of life cycle as a driver of parasite dispersal, using a meta-analysis of 16 studies of population genetic structure in 16 trematode species. After accounting for the geographic scale of a study, the number of populations sampled, and the genetic marker used, we found the type of life cycle to be the best predictor of genetic structure (Fst): trematode species bound to complete their life cycle within water showed significantly more pronounced genetic structuring than those leaving water through a bird or mammal host. This finding highlights the dependence of parasites on host traits for their dispersal, suggesting that genetic differentiation of parasites reflects the mobility of their hosts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avise, J. C. (2000). Phylogeography: the History and Formation of Species. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Blasco-Costa, I., Waters, J. M. and Poulin, R. (2012). Swimming against the current: genetic structure, host mobility and the drift paradox in trematode parasites. Molecular Ecology 21, 207217. doi: 10.1111/j.1365-294X.2011.05374.x.CrossRefGoogle ScholarPubMed
Criscione, C. D. and Blouin, M. S. (2004). Life cycles shape parasite evolution: comparative population genetics of salmon trematodes. Evolution 58, 198202. doi: 10.1111/j.0014-3820.2004.tb01587.x.Google ScholarPubMed
Criscione, C. D. and Blouin, M. S. (2007). Parasite phylogeographical congruence with salmon host evolutionarily significant units: implications for salmon conservation. Molecular Ecology 16, 9931005.CrossRefGoogle ScholarPubMed
Criscione, C. D., Cooper, B. and Blouin, M. S. (2006). Parasite genotypes identify source populations of migratory fish more accurately than fish genotypes. Ecology 87, 823828. doi: 10.1111/j.1365-294X.2006.03220.x.CrossRefGoogle ScholarPubMed
Criscione, C. D., Vilas, R., Paniagua, E. and Blouin, M. S. (2011). More than meets the eye: detecting cryptic microgeographic population structure in a parasite with a complex life cycle. Molecular Ecology 20, 25102524. doi: 10.1111/j.1365-294X.2011.05113.x.CrossRefGoogle Scholar
De Bie, T., De Meester, L., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., Hampel, H., Denys, L., Vanhecke, L., Van Der Gucht, K., Van Wichelen, J., Vyverman, W. and Declerck, S. A. J. (2012). Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15, 740747. doi: 10.1111/j.1461-0248.2012.01794.x.CrossRefGoogle Scholar
Dybdahl, M. F. and Lively, C. M. (1996). The geography of coevolution: comparative population structures for a snail and its trematode parasite. Evolution 50, 22642275.CrossRefGoogle ScholarPubMed
Esch, G. W., Kennedy, C. R., Bush, A. O. and Aho, J. M. (1988). Patterns of helminth communities in freshwater fish in Great Britain: alternative strategies for colonization. Parasitology 96, 519532. doi: 10.1017/S003118200008015XCrossRefGoogle ScholarPubMed
Gower, C. M., Gabrielli, A. F., Sacko, M., Dembele, R., Golan, R., Emery, A. M., Rollinson, D. and Webster, J. P. (2011). Population genetics of Schistosoma haematobium: development of novel microsatellite markers and their application to schistosomiasis control in Mali. Parasitology 138, 978994. doi: 10.1017/s0031182011000722.CrossRefGoogle ScholarPubMed
Gower, C. M., Gabrielli, A. F., Sacko, M., Dembele, R., Golan, R., Emery, A. M., Rollinson, D. and Webster, J. P. (2012). Population genetics of Schistosoma haematobium: development of novel microsatellite markers and their application to schistosomiasis control in Mali – CORRIGENDUM. Parasitology 139, 962.Google Scholar
Keeney, D. B., Bryan-Walker, K., King, T. M. and Poulin, R. (2008). Local variation of within-host clonal diversity coupled with genetic homogeneity in a marine trematode. Marine Biology 154, 183190.CrossRefGoogle Scholar
Keeney, D. B., King, T. M., Rowe, D. L. and Poulin, R. (2009). Contrasting mtDNA diversity and population structure in a direct-developing marine gastropod and its trematode parasites. Molecular Ecology 18, 45914603.CrossRefGoogle Scholar
Kort, H., Vandepitte, K. and Honnay, O. (2012). A meta-analysis of the effects of plant traits and geographical scale on the magnitude of adaptive differentiation as measured by the difference between QST and FST. Evolutionary Ecology, 117. doi: 10.1007/s10682-012-9624-9.Google Scholar
Laoprom, N., Sithithaworn, P., Ando, K., Sithithaworn, J., Wongkham, S., Laha, T., Klinbunga, S., Webster, J. P. and Andrews, R. H. (2010). Microsatellite loci in the carcinogenic liver fluke, Opisthorchis viverrini and their application as population genetic markers. Infection Genetics and Evolution 10, 146153. doi: 10.1016/j.meegid.2009.11.005.CrossRefGoogle ScholarPubMed
Louhi, K. R., Karvonen, A., Rellstab, C. and Jokela, J. (2010). Is the population genetic structure of complex life cycle parasites determined by the geographic range of the most motile host? Infection, Genetics and Evolution 10, 12711277. doi:10.1016/j.meegid.2010.08.013.CrossRefGoogle ScholarPubMed
Lydeard, C., Mulvey, M., Aho, J. and Kennedy, P. (1989). Genetic-variability among natural populations of the liver fluke Fascioloides magna in White-tailed deer, Odocoileus virginianus. Canadian Journal of Zoology 67, 20212025.CrossRefGoogle Scholar
Marcogliese, D. (1995). The role of zooplankton in the transmission of helminth parasites to fish. Reviews in Fish Biology and Fisheries 5, 336371. doi: 10.1007/bf00043006.CrossRefGoogle Scholar
Møller, A. P. and Jennions, M. D. (2001). Testing and adjusting for publication bias. Trends in Ecology and Evolution 16, 580586.CrossRefGoogle Scholar
Morjan, C. L. and Rieseberg, L. H. (2004). How species evolve collectively: implications of gene flow and selection for the spread of advantageous alleles. Molecular Ecology 13, 13411356. doi: 10.1111/j.1365-294X.2004.02164.x.CrossRefGoogle ScholarPubMed
Mulvey, M., Aho, J. M., Lydeard, C., Leberg, P. L. and Smith, M. H. (1991). Comparative population genetic-structure of a parasite (Fascioloides magna) and its definitive host. Evolution 45, 16281640. doi: 10.2307/2409784.Google ScholarPubMed
Nadler, S. A. (1995). Microevolution and the genetic structure of parasite populations. Journal of Parasitology 81, 395403.CrossRefGoogle ScholarPubMed
Nakagawa, S. and Poulin, R. (2012). Meta-analytic insights into evolutionary ecology: an introduction and synthesis. Evolutionary Ecology 26, 10851099. doi: 10.1007/s10682-012-9593-z.CrossRefGoogle Scholar
Poulin, R. and Forbes, M. (2012). Meta-analysis and research on host–parasite interactions: past and future. Evolutionary Ecology 26, 11691185. doi: 10.1007/s10682-011-9544-0.CrossRefGoogle Scholar
Prugnolle, F., Liu, H., De Meeûs, T. and Balloux, F. (2005 a). Population genetics of complex life-cycle parasites: an illustration with trematodes. International Journal for Parasitology 35, 255263. doi: 10.1016/j.ijpara.2004.10.027.CrossRefGoogle ScholarPubMed
Prugnolle, F., Roze, D., Théron, A. and De Meeûs, T. (2005 b). F-statistics under alternation of sexual and asexual reproduction: a model and data from schistosomes (platyhelminth parasites). Molecular Ecology 14, 13551365.CrossRefGoogle Scholar
Prugnolle, F., Théron, A., Pointier, J. P., Jabbour-Zahab, R., Jarne, P., Durand, P. and De Meeûs, T. (2005 c). Dispersal in a parasitic worm and its two hosts: consequence for local adaptation. Evolution 59, 296303. doi: 10.1111/j.0014-3820.2005.tb00990.x.Google Scholar
Riginos, C., Douglas, K. E., Jin, Y., Shanahan, D. F. and Treml, E. A. (2011). Effects of geography and life history traits on genetic differentiation in benthic marine fishes. Ecography 34, 566575. doi: 10.1111/j.1600-0587.2010.06511.x.CrossRefGoogle Scholar
Rousset, F. (1997). Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 12191228.CrossRefGoogle ScholarPubMed
Saijuntha, W., Tantrawatpan, C., Sithithaworn, P., Andrews, R. H. and Petney, T. N. (2011). Spatial and temporal genetic variation of Echinostoma revolutum (Trematoda: Echinostomatidae) from Thailand and the Lao PDR. Acta Tropica 118, 105109.CrossRefGoogle ScholarPubMed
Shurin, J. B., Cottenie, K. and Hillebrand, H. (2009). Spatial autocorrelation and dispersal limitation in freshwater organisms. Oecologia 159, 151159. doi: 10.1007/s00442-008-1174-z.CrossRefGoogle ScholarPubMed
Slatkin, M. (1993). Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47, 264279. doi: 10.2307/2410134.CrossRefGoogle Scholar
Steinauer, M. L., Hanelt, B., Agola, L. E., Mkoji, G. M. and Loker, E. S. (2009). Genetic structure of Schistosoma mansoni in western Kenya: the effects of geography and host sharing. International Journal for Parasitology 39, 13531362. doi: 10.1016/j.ijpara.2009.04.010.CrossRefGoogle ScholarPubMed
Théron, A. and Combes, C. (1995). Asynchrony of infection timing, habitat preference, and sympatric speciation of schistosome parasites. Evolution 49, 372375.CrossRefGoogle ScholarPubMed
Thieltges, D. W., Hof, C., Borregaard, M. K., Matthias Dehling, D., Brändle, M., Brandl, R. and Poulin, R. (2011). Range size patterns in European freshwater trematodes. Ecography 34, 982989. doi: 10.1111/j.1600-0587.2010.06268.x.CrossRefGoogle Scholar
Vilas, R., Sanmartin, M. L. and Paniagua, E. (2004). Genetic variability of natural populations of trematodes of the genus Lecithochirium parasites of eels. Parasitology 129, 191201. doi: 10.1017/s0031182004005402.CrossRefGoogle ScholarPubMed