Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T13:03:48.597Z Has data issue: false hasContentIssue false

Host specificity, host location and dispersal: experimental conclusions from freshwater mites (Unionicola spp.) parasitizing unionid mussels

Published online by Cambridge University Press:  06 April 2009

J. Barbara Downes
Affiliation:
Department of Biological Science, Florida State University, Tallahassee, FL 32306-2043, USA

Summary

Parasites with low host specificity are predicted to search for hosts in ways less specific than highly host-specific species. They may also be better dispersers. Unionicolan mites that parasitize mussels are positively phototactic, with some species becoming negatively phototactic when host substances are present. This response has been interpreted as an aid to host location and occurs in species where adult mites have a relatively permanent association with hosts. Three species of Unionicola (Unionicolidae: Acari) that differ in host specificity co-occur in freshwater mussels (Unionidae) in St Mark's River in north Florida.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ankel, F. & Christensen, A. M. (1963). Non-specificity in host-selection by Odostoma scalaris MacGillioray. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening 125, 321–5.Google Scholar
Barr, D. & Smith, B. P. (1979). The contribution of setal blades to effective swimming in the aquatic mite Limnochares americana (Acari: Postigmata: Limnocharidae). Zoological Journal of the Linnean Society 65, 5569.CrossRefGoogle Scholar
Boray, J. C. (1969). Experimental fascioliasis in Australia. Advances in Parasitology 7, 96210.Google Scholar
Bortone, S. A., Bradley, W. K. & Oglesby, J. L. (1978). The host–parasite relationship of two copepod species and two fish species. Journal of Fish Biology 13, 337–50.Google Scholar
Boxshall, G. A. (1976). The host specificity of Lepeophtheirus pectoralis (Muller, 1766) (Copepoda:Caligidae). Journal of Fish Biology 8, 255–64.CrossRefGoogle Scholar
Bush, A. O. & Holmes, J. C. (1986 a). Intestinal helminths of lesser scaup ducks: patterns of association. Canadian Journal of Zoology 64, 132–41.Google Scholar
Bush, A. O. & Holmes, J. C. (1986 b). Intestinal helminths of lesser scaup ducks: an interactive community. Canadian Journal of Zoology 64, 142–52.CrossRefGoogle Scholar
Colwell, R. K. (1986). Community biology and sexual selection: Lessóns from hummingbird flower mites. In Community Ecology (ed. Diamond, J. and Case, T. J.), pp. 406–24. New York: Harper and Row.Google Scholar
Cook, D. R. (1974). Water mite genera and subgenera. Memoirs of the American Entomological Institute, No.21.Google Scholar
Davids, C. (1973). The relations between mites of the genus Unionicola and the mussels Anodonta and Unio. Hydrobiologia 41, 3744.CrossRefGoogle Scholar
Del Portillo, H. A. & Dimock, R. V. (1982). Specificity of the host-induced negative phototaxis of the symbiotic water mite, Unionicola formosa. Biological Bulletin 162, 163–70.Google Scholar
Dimock, R. V. Jr (1983). In defense of the harem: intraspecific aggression by male water mites (Acari: Unionicolidae). Annals of the Entomological Society of America 76, 463–5.CrossRefGoogle Scholar
Dimock, R. V. Jr & Davids, C. (1985). Spectral sensitivity and photo-behaviour of the water mite genus Unionicola. Journal of Experimental Biology 119, 349–64.Google Scholar
Downes, B. J. (1986). Guild structure in water mites (Unionicola spp.) inhabiting freshwater mussels: choice, competitive exclusion and sex. Oecologia 70, 457–65.Google Scholar
Downes, B. J. (1988). Coexistence in harlequin habitats: the organization of mite guilds inhabiting freshwater mussels. Ph.D. dissertation, Florida State University, Tallahassee, FL, USA.Google Scholar
Emson, R. H. & Mladenov, P. V. (1987). Brittlestar hosts specificity and apparent host discrimination by the parasitic copepod Ophiopsyllus reductus. Parasitology 94, 715.CrossRefGoogle Scholar
Fingleton, B. (1984). Models of Category Counts. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Forrester, D. J., Pence, D. B., Bush, A. O., Lee, D. M. & Holler, N. R. (1988). Ecological consequences of the helminths of round-tailed muskrats (Neofiber alleni True) in southern Florida. Canadian Journal of Zoology 65, 2976–9.CrossRefGoogle Scholar
Goater, T. M., Esch, G. W. & Bush, A. O. (1987). Helminth parasites of sympatric salamanders: Ecological concepts at infracommunity, component and compound community levels. American Midland Naturalist 118, 289300.CrossRefGoogle Scholar
Hepper, B. T. (1956). The European flat oyster, Ostrea edulis L., as a host for Mytilicola intestinalis Steuer. Journal of Animal Ecology 25, 144–7.CrossRefGoogle Scholar
Hevers, J. (1980). Biologisch–okologische Untersuchungen zum Entwicklungszyklus der in Deutschland auftretenden Unionicola–Arten (Hydrachnellae, Acari). Archiv fü Hydrobiologie (Suppl.yes) 57, 324–73.Google Scholar
Hobbs, R. P. (1980). Interspecific interactions among gastrointestinal helminths in pikas of North America. American Midland Naturalist 103, 1525.CrossRefGoogle Scholar
Holmes, J. C. (1973). Site selection by parasitic helminths: interspecific interactions, site segregation and their importance to the development of helminth communities. Canadian Journal of Zoology 51, 333–47.CrossRefGoogle Scholar
Holmes, J. C. (1979). Parasite populations and host community structure. In Host–Parasite Interfaces (ed. Nichol, B. B.), pp. 2746. New York: Academic Press.Google Scholar
Kearn, G. C. (1967). Experiments on host-finding and host-specificity in the monogenean skin parasite Entobdella soleae. Parasitology 57, 585605.Google Scholar
Kearn, G. C. (1986). Role of chemical substances from fish hosts in hatching and host-finding in monogeneans. Journal of Chemical Ecology 12, 1651–8.Google Scholar
Kennedy, C. R. (1975). Ecological Animal Parasitology New York: John Wiley and Sons.Google Scholar
Kennedy, C. R. (1976). Reproduction and dispersal. In Ecological Aspects of Parasitology (ed. Kennedy, C. R.), pp. 143–59. Amsterdam: North-Holland.Google Scholar
Kotecki, N. R. (1970). Circulation of the cestode fauna of Anseriformes in the Municipal Zoological Gardens in Warszawa. Acta Parasitologica Polonica 17, 329–55.Google Scholar
Larochelle, P. B. & Dimock, R. V. Jr (1981). Behavioural aspects of host recognition by the symbiotic water mite Unionicola formosa (Acarina, Unionicolidae). Oecologia 48, 257–9.CrossRefGoogle ScholarPubMed
Lotz, J. M. & Font, W. F. (1985). Structure of enteric helminth communities in two populations of Eptesicus fuscus (Chiroptera). Canadian Journal of Zoology 63, 2969–78.Google Scholar
Lundqvist, L. & Edler, A. (1987). Dispersal in patchy environments: effect on the prevalence of small mammal ectoparasites. Folia Parasitologica 34, 357–67.Google Scholar
Macdonald, S. (1975). Hatching rhythms in three species of Diclidophora (Monogenea) with observations on host behaviour. Parasitology 71, 211–28.Google Scholar
Mcphail, J. D. & Peacock, S. D. (1983). Some effects of the cestode (Schistocephalus solidus) on reproduction in threespine stickleback (Gasterosteus aculeatus): evolutionary aspects of a host–parasite interaction. Canadian Journal of Zoology 61, 901–8.Google Scholar
Mackie, G. L., Morton, W. B. & Ferguson, M. S. (1983). Fish parasitism in a new impoundment and differences upstream and downstream. Hydrobiologia 99, 197205.Google Scholar
Mitchell, R. D. (1955). Anatomy, life-history, and evolution of the mites parasitizing fresh-water mussels. Miscellaneous Publications of the Museum of Zoology, University of Michigan. No. 89.Google Scholar
Mitchell, R. D. (1957). On the mites parasitizing Anodonta (Unionidae: Mollusca). Journal of Parasitology 43, 101–4.CrossRefGoogle ScholarPubMed
Mitchell, R. D. (1965). Population regulation of a water mite parasitic on unionid mussels. Journal of Parasitology 51, 990–6.Google Scholar
Mitchell, R. D. & Pitchford, O. W. (1953). On the mites parasitizing Anodonta in Britain. Journal of Conchology 23, 365–70.Google Scholar
Mohr, C. O. (1961). Relation of ectoparasite load to host size and standard range. Journal of Parasitology 47, 978–84.CrossRefGoogle ScholarPubMed
Noble, E. R. & Noble, G. A. (1976). Parasitology, 4th Edn. Philadelphia: Lea and Febiger.Google Scholar
Orr, T. S. C., Hopkins, C. A. & Charles, G. H. (1969). Host specificity and rejection of Schistocephalus solidus. Parasitology 59, 683–90.Google Scholar
Poulin, R. & Fitzgerald, G. J. (1987). The potential of parasitism in the structuring of a salt marsh stickleback community. Canadian Journal of Zoology, 65, 2793–8.CrossRefGoogle Scholar
Roberts, E. A., Dimock, R. V. & Forward, R. B. (1978). Positive and host-induced negative phototaxis of the symbiotic water mite Unionicola formosa. Biological Bulletin 155, 599607.CrossRefGoogle Scholar
Rohde, K. (1978). Latitudinal differences in host specificity of marine Monogenea and Digenea. Marine Biology 47, 125–34.CrossRefGoogle Scholar
Rohde, K. (1979). A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites. American Naturalist 114, 648–71.Google Scholar
Rohde, K. (1982). Ecology of Marine Parasites. St Lucia, Queensland, Australia: University of Queensland Press.Google Scholar
Smith, B. P. & Barr, D. (1977). Swimming by the water mite Limnochares americana Lundblad (Acari, Parasitengona, Limnocharidae). Canadian Journal of Zoology 55, 2050–9.CrossRefGoogle Scholar
Smith, B. P. & Mciver, S. B. (1984). Factors influencing host selection and successful parasitism of Aedes spp. mosquitoes by Arrenurus spp. mites. Canadian Journal of Zoology 62, 1114–20.CrossRefGoogle Scholar
Sokal, R. R. & Rohlf, F. J. (1981). Biometry 2nd Edn. New York: W. H. Freeman.Google Scholar
Vidrine, M. F. (1980). Systematics and coevolution of unionicolid water mites and their unionid mussel hosts in the eastern United States. Ph.D. dissertation, University of Southwestern Louisiana, Lafayette, USA.Google Scholar
Vidrine, M. F. (1984). Fulleratax, new subgenus (Acari: Unionicolidae: Unionicolinae: Unionicola), in southeast Asia. International Journal of Acarology 10, 229–33.Google Scholar
Vidrine, M. F. (1985 a). Three new species of Unionicola (Acari: Unionicolidae: Unionicolinae) inhabiting freshwater mussels (Unionacea) in southeast Asia. International Journal of Acarology 11, 125–31.Google Scholar
Vidrine, M. F. (19856) Berezatax, new subgenus (Acari: Unionicolidae: Unionicolinae: Unionicola), in subtropical and tropical North America, with a re-evaluation of the higher taxonomic groups of related American unionicoline mites. International Journal of Acarology 11, 133–41.Google Scholar
Vidrine, M. F. (1985 c). Nine new species in the subgenus Atacella (Acari: Unionicolidae: Unionicola) from Mexico and Brazil. International Journal of Acarology 11, 255–71.Google Scholar
Vidrine, M. F. (1985 d). Six new species in the subgenus Polyatax (Acari: Unionicolidae: Unionicola) from North America, with a re-evaluation of related taxa. International Journal of Acarology 11, 273–87.Google Scholar
Vidrine, M. F. (1986 a). Anodontinatax, new subgenus (Acari: Unionicolidae: Unionicola), in holarctic fresh-water mussels (Unionidae: Anodontinae), with a re-evaluation of related taxa. International Journal of Acarology 12, 95104.CrossRefGoogle Scholar
Vidrine, M. F. (1986 b). Ten new species in the subgenus Unionicolides (Acari: Unionicolidae: Unionicola) in North and South America, with a re-evaluation of related species. International Journal of Acarology 12, 123–40.Google Scholar
Vidrine, M. F. (1986 c). Five new species in the subgenus Parasitatax (Acari: Unionicolidae: Unionicola) from North America and Asia, with a re-evaluation of related species. International Journal of Acarology 12, 141–53.Google Scholar
Vidrine, M. F. (1986d). Revision of the Unionicolinae (Acari: Unionicolidae). International Journal of Acarology 12, 233–43.CrossRefGoogle Scholar
Vidrine, M. F. (1987). Ten new species of water mites (Acari: Unionicolidae: Unionicola: Unionicolides) in North American fresh-water mussels (Unionacea: Unionidae: Ambleminae). International Journal of Acarology 13, 251–9.Google Scholar
Vogel, S. (1981). Life in Moving Fluids: The Physical Biology of Flow. Princeton, NJ: Princeton University Press.Google Scholar
Welsh, J. H. (1931). Specific influence of the host on the light responses of parasitic water mites. Biological Bulletin 61, 497–9.Google Scholar
Winer, B. J. (1971). Statistical Principles in Experimental Design. Sydney, Australia: McGraw-Hill, Kogakusha.Google Scholar