Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T17:34:48.341Z Has data issue: false hasContentIssue false

Host recognition behaviour predicts host suitability in the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinernematidae)

Published online by Cambridge University Press:  06 April 2009

E. E. Lewis*
Affiliation:
Department of Entomology, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick, NJ 08903-0231, USA
M. Ricci
Affiliation:
Department of Entomology, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick, NJ 08903-0231, USA
R. Gaugler
Affiliation:
Department of Entomology, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick, NJ 08903-0231, USA
*
* Corresponding author. Department of Entomology, 1300 Symons Hall, University of Maryland, College Park, MD 20742, USA. Tel: + 301 405 3911. Fax: + 301 314 9290. E-mail: [email protected].

Summary

Steinernema carpocapsae (Rhabditida: Steinernematidae) host recognition behaviour was assessed and compared with 2 measures of host suitability. Previous research showed that S. carpocapsae infective juveniles respond to host cues in a hierarchical order, with attraction to Galleria mellonella volatiles being stimulated by contact with G. mellonella cuticle. We measured host recognition behaviour by calculating the percentage response of S. carpocapsae infective juveniles to volatiles produced by G. mellonella last instars after the nematodes were exposed to the cuticle of 11 candidate arthropod hosts and 2 control surfaces. Host suitability was measured by nematode-induced mortality to candidate hosts at 2 nematode doses and the level of reproduction supported by each host. The highest recognition response was scored for Agrotis ipsilon (Lepidoptera: Noctuidae). This insect also incurred nearly 100% mortality due to nematode infection and supported the highest level of reproduction. Non-insect arthropods tested (Chilopoda and Isopoda) stimulated no behavioural response and were not susceptible to nematode infection. Other insect species elicited intermediate levels of the recognition response. There were significant correlations between behavioural response and nematode-induced mortality at the lower dose. The level of reproduction supported by the candidate hosts was also correlated with S. carpocapsae behavioural response.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bedding, R., Akhurst, R. & Kaya, H. (1993). Nematodes and the Biological Control of Insect Pests. CSIRO, East Melbourne, Australia.CrossRefGoogle Scholar
Burman, M. (1982). Neoaplectana carpocapsae: Toxin production by axenic insect parasitic nematodes. Nematologica 28, 6270.Google Scholar
Campbell, J. F. & Gaugler, R. (1993). Nictation behaviour and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behaviour 126, 155169.Google Scholar
cui, L., Wang, Y. & Gaugler, R. (1993). Penetration of Steinernematid nematodes (Nematoda: Steinernematidae) into Japanese beetle larvae, Popillia japonica (Coleoptera: Scarabaeidae). Journal of Invertebrate Pathology 62, 7378.CrossRefGoogle Scholar
Dutky, S. R., Thompson, J. V. & Cantwell, G. E. (1964). A technique for the mass propagation of the DD-136 nematode. Journal of Insect Pathology 6, 417422.Google Scholar
Forschler, B. & Gardener, W. (1991). Parasitism of Phyllophaga hirticula (Coleoptera: Scarabaeidae) by Heterorhabditis heliothidis and Steinernema carpocapsae. Journal of Invertebrate Pathology 58, 396407.CrossRefGoogle Scholar
Gaugler, R. (1988). Ecological considerations in the biological control of soil-inhabiting insect pests with entomopathogenic nematodes. Agriculture, Ecosystem and Environment 24, 351360.Google Scholar
Gaugler, R., Campbell, J. F. & McGuire, T. (1990). Selection for host finding in Steinernema feltiae. Journal of Invertebrate pathology 54, 363372.CrossRefGoogle Scholar
Gaugler, R. & Kaya, H. K. (1990). Entomopathogenic Nematodes in Biological Control. CRC, Boca Raton, Florida.Google Scholar
Gaugler, R., Wang, Y. & Campbell, J. F. (1994). Aggressive and evasive behaviors in Popillia japonica (Coleoptera: Scarabaeidae) larvae: Defenses against entomopathogenic nematode attack. Journal of Invertebrate Pathology 64, 193199CrossRefGoogle Scholar
Georgis, R. (1990). Formulation and application technology. In Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. & Kaya, H.), pp. 173194. CRC Press, Boca Raton FL.Google Scholar
Georgis, R. & Gaugler, R. (1991). Predictability in biological control using entomopathogenic nematodes. Journal of Economic Entomology 84, 713720.CrossRefGoogle Scholar
Georgis, R. & Hague, N. G. M. (1981). A neoaplectanid nematode in the larch sawfly Cephalcia larchiphila (Hymenoptera: Pamphiliidae). Annals of Applied Biology 99, 171177.CrossRefGoogle Scholar
Granzer, M. & Haas, W. (1991). Host-finding and host recognition of infective Ancylostoma caninum larvae. International Journal for Parasitology 21, 429440.CrossRefGoogle ScholarPubMed
Grewal, P. S., Gaugler, R. & Lewis, E. E. (1993 a). Host recognition behavior by entomopathogenic nematodes during contact with insect gut contents. Journal of Parasitology 79, 495503.CrossRefGoogle Scholar
Grewal, P. S., Gaugler, R. & Selvan, S. (1993 b). Host recognition by entomopathogenic nematodes: behavioral response to contact with host feces. Journal of Chemical Ecology 19, 12191231.CrossRefGoogle ScholarPubMed
Grewal, P. S., Lewis, E. E., Gaugler, R. & Campbell, J. F. (1994). Host finding behaviour as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology 108, 207215.Google Scholar
Haas, W., Harberl, B., Schmalfuss, G. & Khayyal, T. (1994). Schistosoma haematobium cercarial host-finding and host-recognition differs from that of S. mansoni. Journal of Parasitology 80, 345353.CrossRefGoogle ScholarPubMed
Jackson, J. J. & Brooks, M. A. (1989). Susceptibility and immune response of western corn rootworm larvae (Coleoptera: Chrysomellidae) to the entomogenous nematode, Steinernema feltiae (Rhabditida: Steinernematidae). Journal of Economic Entomology 82, 10731077.Google Scholar
Jackson, J. J. & Brooks, M. A. (1995). Parasitism of Western Corn Rootworm larvae and pupae by Steinernema carpocapsae. Journal of Nematology 27, 1520.Google ScholarPubMed
Kaya, H. K. & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology 38, 181206.CrossRefGoogle Scholar
Kaya, H. & Hara, A. (1980). Differential susceptibility of lepidopterous pupae to infection by the nematode Neoaplectana carpocapsae. Journal of Invertebrate Pathology 36, 389393.CrossRefGoogle Scholar
Kaya, H. & Hara, A. (1981). Susceptibility of various species of lepidopterous pupae to the entomogenous nematode Neoaplectana carpocapsae. Journal of Nematology 13, 291294.Google Scholar
Klein, M. G. (1990). Efficacy against soil-inhabiting insect pests. In Entomopathogenic Nematodes in Biological Control, (ed. Gaugler, R. & Kaya, H.) pp. 195214. CRC Press, Boca Raton, FL.Google Scholar
Lewis, E. E., Gaugler, R. & Harrison, R. (1992). Entomopathogenic nematode host finding: response to contact cues by cruise and ambush foragers. Parasitology 105, 309315.CrossRefGoogle Scholar
Lewis, E. E., Gaugler, R. & Harrison, R. (1993). Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Canadian Journal of Zoology 71, 765769.CrossRefGoogle Scholar
Lewis, E. E., Grewal, P. S. & Gaugler, R. (1995). Hierarchical order of host cues in parasite foraging strategies. Parasitology 110, 207213.CrossRefGoogle Scholar
Morris, O. N. (1985). Susceptibility of 31 species of agricultural insect pests to entomogenous nematodes Steinernema feltiae and Heterorhabditis bacteriophora. Canadian Entomologist 117, 401407.CrossRefGoogle Scholar
Poinar, G. O. Jr. (1990). Taxonomy and biology of Steinernematidae and Heterorhabditidae. In Entomopathogenic Nematodes in Biological Control, (ed. Gaugler, R. & Kaya, H.), pp. 2361. CRC Press, Boca Raton, FL.Google Scholar
Selvan, S., Grewal, P. S., Gaugler, R. & Tomolak, M. (1994). Evaluation of steinernematid nematodes against Popillia japonica (Coleoptera: Scarabaeidae) larvae: Species, strains, and rinse after application. Journal of Economic Entomology 87, 605609.CrossRefGoogle Scholar
Wang, Y., Gaugler, R. & cui, L. (1994). Variation in immune response of Popillia japonica and Acheta domesticus to Heterorhabditis bacteriophora and Steinernema species. Journal of Nematology 26, 1118.Google ScholarPubMed
Webster, J. M. & Dunphy, G. B. (1988). Host compatibility of insects to nematodes. In Vistas on Nematology: A Commemoration of the Twenty-Fifth Anniversary of the Society of Nematologists, pp. 237245. Society of Nematologists, Inc., Hyattsville, Maryland.Google Scholar
Woodring, J. L. & Kaya, H. K. (1988). Steinernematid and Heterorhabditid Nematodes: a Handbook of Techniques. Southern Cooperative Series Bulletin 331. Fayetteville, Arkansas: Arkansas Agricultural Experiment Station.Google Scholar