Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T05:59:57.148Z Has data issue: false hasContentIssue false

A histochemical study of the distribution of glycogen and oxidoreductase activity in Polymorphus minutus (Goeze, 1782) (Acanthocephala)

Published online by Cambridge University Press:  06 April 2009

D. W. T. Crompton
Affiliation:
The Molteno Institute, University of Cambridge

Extract

The distribution of glycogen has been studied in P. minutus by means of histochemical methods. The strongest staining for glycogen was detected in the proboscis, the radial layer of the body wall and the non-contractile parts of the muscles.

Histochemical methods have also been used to study the localization of the activity of ten oxidoreductase enzymes. The enzymes are situated in the mitochondria of P. minutus, the distribution of which corresponds closely with that of glycogen.

I am grateful to Dr P. Tate for helpful discussions, and to Drs D. L. Lee and F. P. B. Wooding for criticizing the manuscript. Thanks are also due to Mr D. Barnard for technical assistance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bourne, G. H. & Tewari, H. B. (1964). Mitochondria and the golgi complex. In Cytology and Cell Physiology, 3rd ed. Ed. Bourne, G. H.. New York and London: Academic Press.Google Scholar
Brand, T. von (1939 a). Chemical and morphological observations upon the composition of Macracanthorhynchus hirudinaceus (Acanthocephala). J. Parasit. 25, 329–42.CrossRefGoogle Scholar
Brand, T. von (1939 b). The glycogen distribution in the body of Acanthocephala. J. Parasit. 25, suppl. 22.Google Scholar
Brand, T. von (1940). Further observations upon the composition of Acanthocephala. J. Parasit. 26, 301–7.CrossRefGoogle Scholar
Brand, T. von (1952). Chemical Physiology of Endoparasitic Animals. New York: Academic Press.Google Scholar
Brand, T. von (1960). Recent advances in carbohydrate biochemistry of helminths. Helminth. Abstr. 29, 115.Google Scholar
Brand, T. von & Saurwein, J. (1942). Further studies upon the chemistry of Macracanthorhynchus hirudinaceus. J. Parasit. 28, 315–18.CrossRefGoogle Scholar
B.D.H. (1958). Biological Stains and Staining Methods, 2nd ed.Poole, Dorset: British Drug Houses Ltd.Google Scholar
Bullock, W. L. (1949). Histochemical studies on the Acanthocephala. II. The distribution of glycogen and fatty substances. J. Morph. 84, 201–26.CrossRefGoogle Scholar
Burstone, M. R. (1962). Enzyme Histochemistry and its Application in the Study of Neoplasms. New York and London: Academic Press.Google Scholar
Crompton, D. W. T. (1963). Morphological and histochemical observations of Polymorphus minutus (Goeze, 1782), with special reference to the body wall. Parasitology, 53, 663–85.CrossRefGoogle Scholar
Crompton, D. W. T. & Lee, D. L. (1965). The fine structure of the body wall of Polymorphus minutus (Goeze, 1782) (Acanthocephala). Parasitology, 55, 357–64.CrossRefGoogle ScholarPubMed
Dunagan, T. T. (1963). Glycogen depletion in Neochinorhynchus spp. (Acanthocephala) from turtles. J. Parasit. 49, suppl. 1819.Google Scholar
Dunagan, T. T. (1964). Studies on the carbohydrate metabolism of Neoechinorhynchus spp. (Acanthocephala). Proc. helminth. Soc. Wash. 31, 166–72.Google Scholar
Green, D. E. & Fleischer, S. (1960). The mitochondrial system of enzymes. In Metabolic Pathways, vol. 1. Ed. Greenberg, D. M.. New York and London: Academic Press.Google Scholar
Haley, A. J. & Bullock, W. L. (1952). Comparative histochemical studies on the cement glands of certain Acanthocephala. J. Parasit. 38, suppl. 25–6.Google Scholar
Kmetec, E., Miller, J. H. & Swartzwelder, J. C. (1962). Isolation and structure of mitochondria from Ascaris lumbricoides muscle. Expl Parasit. 12, 184–91.CrossRefGoogle ScholarPubMed
Laurie, J. S. (1959). Aerobic metabolism of Moniliformis dubius (Acanthocephala). Expl Parasit. 8, 188–97.CrossRefGoogle ScholarPubMed
Novikoff, A. B., Shin, W-Y. & Drucker, J. (1961). Mitochondrial localization of oxidative enzymes: staining results with two tetrazolium salts. J. biophys. biochem. Cytol. 9, 4761.CrossRefGoogle ScholarPubMed
Pearse, A. G. E. (1960). Histochemistry. Theoretical and Applied, 2nd ed.London: J. and A. Churchill Ltd.Google Scholar
Report of the Commission on Enzymes of the International Union of Biochemistry (1961). I.U.B. Symposium Series, vol. 20. Oxford, London, New York, Paris: Pergamon Press.Google Scholar
Rogers, W. P. (1949). On the relative importance of aerobic metabolism in small nematode parasites of the alimentary tract. I. Oxygen tensions in the normal environment of the parasites. Aust. J. scient. Res. B, 2, 166–74.Google Scholar
Schneider, W. C. & Kuff, E. L. (1964). Centrifugal isolation of subcellular components. In Cytology and Cell Physiology, 3rd ed. Ed. Bourne, G. H.. New York and London: Academic Press.Google Scholar
Smyth, J. D. & Hopkins, C. A. (1948). Ester wax as a medium for embedding tissue for the histological demonstration of glycogen. Q. Jl. microsc. Sci. 89, 431–6.Google ScholarPubMed
Wigglesworth, V. B. (1959). A simple method for cutting sections in the 0·5 to 1 μ range and for sections of chitin. Q. Jl. microsc. Sci. 100, 315–20.Google Scholar