Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T22:15:41.737Z Has data issue: false hasContentIssue false

The high resolution melting analysis (HRM) as a molecular tool for monitoring parasites of the wildlife

Published online by Cambridge University Press:  12 December 2016

LAURENT HÉRITIER*
Affiliation:
Univ. Perpignan Via Domitia, CEntre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, F-66860, Perpignan, France CNRS, CEntre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, F-66860, Perpignan, France Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
OLIVIER VERNEAU
Affiliation:
Univ. Perpignan Via Domitia, CEntre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, F-66860, Perpignan, France CNRS, CEntre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, F-66860, Perpignan, France Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
GREGORY BREUIL
Affiliation:
Clinique vétérinaire des NAC, 17 impasse Teynier, 31100, Toulouse, France
ANNE-LEILA MEISTERTZHEIM
Affiliation:
Univ. Perpignan Via Domitia, CEntre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, F-66860, Perpignan, France CNRS, CEntre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, F-66860, Perpignan, France
*
*Corresponding author: Univ. Perpignan Via Domitia, CEntre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, F-66860, Perpignan, France, CNRS, CEntre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, F-66860, Perpignan, France and Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa. E-mail: [email protected]

Summary

In an interconnected world, the international pet trade on wild animals is becoming increasingly important. As a consequence, non-native parasite species are introduced, which affect the health of wildlife and contribute to the loss of biodiversity. Because the investigation of parasite diversity within vulnerable host species implies the molecular identification of large samples of parasite eggs, the sequencing of DNA barcodes is time-consuming and costly. Thereby, the objectives of our study were to apply the high resolution melting (HRM) approach for species determination from pools of parasite eggs. Molecular assays were validated on flatworm parasites (polystomes) infecting the Mediterranean pond turtle Mauremys leprosa and the invasive red-eared slider Trachemys scripta elegans in French natural environments. HRM analysis results indicated that double or multiple parasitic infections could be detected from wild animal populations. They also showed that the cycle of parasite eggs production was not regular over time and may depend on several factors, among which the ecological niche and the target species. Thereby, monitoring parasites from wild endangered animals implies periodic parasitological surveys to avoid false negative diagnostics, based solely on eggs production.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badets, M., Morrison, C. and Verneau, O. (2010). Alternative parasite development in transmission strategies: how time flies! Journal of Evolutionary Biology 23, 21512162.Google Scholar
Barry, J., McLeish, J., Dodd, J. A., Turnbull, J. F., Boylan, P. and Adams, C. E. (2014). Introduced parasite Anguillicola crassus infection significantly impedes swim bladder function in the European eel Anguilla anguilla (L.). Journal of Fish Diseases 37, 921924.CrossRefGoogle ScholarPubMed
Berthier, P., Du Preez, L. H., Raharivololoniana, L., Vences, M. and Verneau, O. (2014). Two new species of polystomes (Monogenea: Polystomatidae) from the anuran host Guibemantis liber . Parasitology International 63, 108119.Google Scholar
Besansky, N. J., Severson, D. W. and Ferdig, M. T. (2003). DNA barcoding of parasites and invertebrate disease vectors: what you don't know can hurt you. Trends in Parasitology 19, 545546.CrossRefGoogle ScholarPubMed
Bordes, F. and Morand, S. (2011). The impact of multiple infections on wild animal hosts: a review. Infection Ecology and Epidemiology 1, 7346.CrossRefGoogle ScholarPubMed
Eszterbauer, E., Marton, S., Ràcz, O. Z., Letenyei, M. and Molnàr, K. (2006). Morphological and genetic differences among actinosporean stages of fish-parasitic myxosporeans (Myxozoa): difficulties of species identification. Systematic Parasitology 65, 97114.Google Scholar
Gómez, A. and Nichols, E. (2013). Neglected wild life: parasitic biodiversity as a conservation target. International Journal for Parasitology: Parasites and Wildlife 2, 222227.Google Scholar
Gozlan, R., St-Hilaire, S., Feist, S. W., Martin, P. and Kent, M. L. (2005). Disease threat to European fish. Nature 435, 1046.Google Scholar
Groom, M. J. (2005). Threats to Biodiversity. In principles of conservation biology (eds. Groom, M. J., Meffe, G. K. and Carroll, C. R.), pp. 63109. Sinauer Associates, Inc.Google Scholar
Gundry, C. N., Vandersteen, J. G., Reed, G. H., Pryor, R. J., Chen, J. and Wittwer, C. T. (2003). Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Clinical Chemistry 49, 396406.Google Scholar
Hebert, P. D. N., Cywinska, A., Ball, S. L. and DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences 270, 313321.Google Scholar
Héritier, L., Badets, M., Du Preez, L. H., Aisien, M. S. O., Lixian, F., Combes, C. and Verneau, O. (2015). Evolutionary processes involved in the diversification of chelonian and mammal polystomatid parasites (Platyhelminthes, Monogenea, Polystomatidae) revealed by palaeoecology of their hosts. Molecular Phylogenetics and Evolution 92, 110.Google Scholar
Héritier, L., Valdeón, A., Sadaoui, A., Gendre, T., Ficheux, S., Bouamer, S., Kechemir-Issad, N., Du Preez, L. H., Palacios, C. and Verneau, O. (2016). Introduction and invasion of the red-eared slider and its parasites in freshwater ecosystems of Southern Europe: risk assessment for the European pond turtle in wild environments. Submitted to Biological Invasions.Google Scholar
Iglesias, R., García-Estévez, J., Ayres, C., Acuña, A. and Cordero-Rivera, A. (2015). First reported outbreak of severe spirorchiidiasis in Emys orbicularis, probably resulting from a parasite spillover event. Diseases of Aquatic Organisms 113, 7580.Google Scholar
Lay, M. J. and Wittwer, C. T. (1997). Real-time fluorescence genotyping of factor V Leiden during rapid-cycle PCR. Clinical Chemistry 43, 22622267.CrossRefGoogle ScholarPubMed
Meyer, L., Du Preez, L. H., Bonneau, E., Héritier, L., Quintana, M., Valdeón, A., Sadaoui, A., Kechemir-Issad, N., Palacios, C. and Verneau, O. (2015). Parasite host-switching from the invasive American red-eared slider, Trachemys scripta elegans, to the native Mediterranean pond turtle, Mauremys leprosa, in natural environments. Aquatic Invasions 10, 7991.Google Scholar
Morick, D., Baneth, G., Avidor, B., Kosoy, M. Y., Mumcuoglu, K. Y., Mintz, D., Eyal, O., Goethe, R., Mietze, A., Shpigel, N. and Harrus, S. (2009). Detection of Bartonella spp. in wild rodents in Israel using HRM real-time PCR. Veterinary Microbiology 139, 293297.Google Scholar
Naue, J., Hansmann, T. and Schmidt, U. (2014). High-Resolution Melting of 12S rRNA and Cytochrome b DNA sequences for discrimination of species within distinct European animals families. PLoS ONE 9, e115575.Google Scholar
Ngui, R., Lim, Y. A. L. and Chua, K. H. (2012). Rapid detection and identification of human hookworm infections through high resolution melting (HRM) analysis. PLoS ONE 7, e41996.Google Scholar
Palacios, C., Urrutia, C., Knapp, N., Quintana, M. F., Bertolero, A., Simon, G., Du Preez, L. H. and Verneau, O. (2015). Demographic structure and genetic diversity of Mauremys leprosa in its northern range reveal new populations and a mixed origin. Salamandra 51, 221230.Google Scholar
Pangasa, A., Jex, A. R., Campbell, B. E., Bott, N. J., Whipp, M., Hogg, G., Stevens, M. A. and Gasser, R. B. (2009). High resolution melting-curve (HRM) analysis for the diagnosis of cryptosporidiosis in humans. Molecular and Cellular Probes 23, 1015.Google Scholar
Polo-Cavia, N., Lopez, P. and Martin, J. (2009). Interspecific differences in chemosensory responses of freshwater turtles: consequences for competition between native and invasive species. Biological Invasions 11, 431440.Google Scholar
Polo-Cavia, N., Lopez, P. and Martin, J. (2010). Competitive interactions during basking between native and invasive freshwater turtle species. Biological Invasions 12, 21412152.Google Scholar
Polo-Cavia, N., Lopez, P. and Martin, J. (2011). Aggressive interactions during feeding between native and invasive freshwater turtle species. Biological Invasions 13, 13871396.Google Scholar
Ririe, K. M., Rasmussen, R. P. and Wittwer, C. T. (1997). Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analytical Biochemistry 245, 154160.Google Scholar
Robertson, T., Bibby, S., O'Rourke, D., Belfiore, T., Agnew-Crumpton, R. and Noormohammadi, A. H. (2010). Identification of chlamydial species in crocodiles and chickens by PCR-HRM curve analysis. Veterinary Microbiology 145, 373379.Google Scholar
Sala, O. E., Chapin, F. S. III and Armesto, J. J. (2000). Global biodiversity scenarios for the year 2100. Science 287, 17701774.Google Scholar
Simberloff, D. (2013). Biological invasions: prospects for slowing a major global change. Elementa 1, 000008.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.Google Scholar
Tong, S. Y. C. and Giffard, P. M. (2012). Microbiological applications of high-resolution melting analysis. Journal of Clinical Microbiology 50, 34183421.CrossRefGoogle ScholarPubMed
UICN France, MNHN & SHF (2015). La liste rouge des espèces menacées en France – Chapitre reptiles et amphibiens de France métropolitaine. Paris, France. Availlable at https://inpn.mnhn.fr/docs/LR_FCE/UICN-LR-Reptile-Fascicule-m5-1.pdf Google Scholar
Van Dijk, P. P., Iverson, J. B., Rhodin, A. G. J., Shaffer, H. B. and Bour, R. (2014). Turtles of the world, 7th edition: annotated checklist of taxonomy, synonymy, distribution, and conservation status. Chelonian Research Monographs 5, 329479.Google Scholar
Verneau, O., Palacios, C., Platt, T., Alday, M., Billard, E., Allienne, J. F., Basso, C. and Du Preez, L. H. (2011). Invasive species threat: parasite phylogenetics reveals patterns and processes of host-switching between non-native and native captive freshwater turtles. Parasitology 138, 17781792.Google Scholar
Vitousek, P. M., Mooney, H. A., Lubchenco, J. and Melillo, J. M. (1997). Human domination of Earth's ecosystems. Science 277, 494499.CrossRefGoogle Scholar
Wittwer, C. T., Reed, G. H., Gundry, C. N., Vandersteen, J. G. and Pryor, R. J. (2003). High-resolution genotyping by amplicon melting analysis using LCGreen. Clinical Chemistry 49, 853860.Google Scholar