Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T21:14:01.523Z Has data issue: false hasContentIssue false

Gregarine attachment organelles — structure and permeability of an interspecific cell junction

Published online by Cambridge University Press:  06 April 2009

W. G. MacMillan
Affiliation:
Biophysical Chemistry Unit, Department of Chemistry, University of Aberdeen, Scotland

Extract

The junction between the gregarine trophozoite Nematocystis magna Schmidt and an epithelial cell of its earthworm host Lumbricus terrestris Muller consists of an extensive folding and meshing of the single trilaminar membrane bounding the host cell and the complex folded multilaminar limiting membrane of the trophozoite. They are separated by a structureless intercellular region of some 50 nm in width. Specialized communicating regions or permeable elements were not observed. Transport of a radioactive label across non-junctional and junctional membranes was demonstrated by using tritiated glucose. The attachment organelle of the trophozoite is shown to be capable of allowing metabolites to pass into the cell directly from the host tissue.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, J., & von Brand, T., (1938). Quantitative studies on glucose consumption by Trichomonas foetus. American Journal of Hygiene 28, 138–47.Google Scholar
Bang, F. B., (1966). Effects of invading organisms on cells and tissues in culture. In Cells and Tissues in Culture (ed. Willmer, E. N.), vol. 3. London: Academic Press.Google Scholar
Bullivant, S., & Lowenstein, W. R., (1968). Structure of coupled and uncoupled cell junctions. Journal of Cell Biology 37, 621–32.CrossRefGoogle ScholarPubMed
Butschli, O., (1881). Kleine Beitrage zur Kenntnis der Gregarinen. Zeitschrift fur wissenschaftliche Zoologie 35, 384409.Google Scholar
Chamberlain, J., Hughes, A., Rogers, A. W., & Thomas, G. H., (1964). An evaluation of the available techniques for the autoradiography of tritium on chromatograms. Nature 201, 774–5.CrossRefGoogle ScholarPubMed
Cirillo, V. P., (1962). Mechanism of arabinose transport in Tetrahymena pyriformis. Journal of Bacteriology 84, 754–8.CrossRefGoogle Scholar
Devauchelle, G., (1968). Éitude de l'ultrastructure de Gregarina polymorpha (Hamm.) en syzigie. Journal of Protozoology 15, 629–36.CrossRefGoogle Scholar
Farquhar, M. G., & Palade, G., (1963). Junctional complexes in various epithelia. Journal of Cell Biology 17, 375412.CrossRefGoogle ScholarPubMed
Grassé, P. P., (1953). Sous-embranchement des Sporozoaires-Classe des Gregarinomorphes. In Traité de Zoologie (ed. Grassé, P. P.), T 1, Fasc. 2. Paris: Masson.Google Scholar
Grassé, P. P., & Theodorides, J., (1959). Recherches sur l'ultrastructure de quelques gregarines. Annales des sciences naturelles (Zoologie), 12e sér., 1, 237–52.Google Scholar
Hesse, E., (1909). Contribution à l'étude des monocystidees des oligochetes. Archives de zoologie experimentale et generate, 5e sér., 3, 27301.Google Scholar
Hodson, S. A., (1969). Light microscope autoradiography utilising Araldite sections. Journal of Microscopy 89, 113–20.CrossRefGoogle ScholarPubMed
King, D. W., (1966). Ultrastructural Aspects of Disease. New York: Harper and Row.Google Scholar
Leger, L., & Duboscq, O., (1902). Les grégarines et I'épithélium intestinal chez les tracheates. Archives de parasitologie 6, 377473.Google Scholar
Lowenstein, W. R., (1966). Permeability of membrane junctions. Annals of the New York Academy of Sciences 137, 441–72.CrossRefGoogle Scholar
Luft, J. H., (1961). Improvements in epoxy resin methods. Journal of biophysical and biochemical Cytology 9, 409–14.CrossRefGoogle Scholar
MacMillan, W. G., (1969). Pathogenesis and birefringence in a eugregarine-parasitised epithelial cell. Proceedings of the 3rd International Congress of Protozoology, Leningrad, 1969, p. 341.Google Scholar
MacMillan, W. G., (1970). Some aspects of the biology of Nematocystis magna Schmidt. Ph.D. Thesis, University of Glasgow.Google Scholar
Maegraith, B., (1968). Liver involvement in acute mammalian malaria with special reference to Plasmodium knowlesi malaria. Advances in Parasitology 6, 189232.CrossRefGoogle ScholarPubMed
Millonig, G., (1961). Advantages of a phosphate buffer for osmium tetroxide solutions in fixation. Journal of Applied Physics 32, 1637–9.Google Scholar
Min, H. S., (1965). Studies on the transport of carbohydrate in Criihidia luciliae. Journal of Cellular and Comparative Physiology 65, 243–8.CrossRefGoogle ScholarPubMed
Puytorac, P. DE, (1957). L'argyrome chez les gregarines Monocystinae. Compte rendu de l'Association des anatomistes: 43rd Réunion, Lisbon, 1956, pp. 694706.Google Scholar
Rees, B. (1962). Studies on monocystid gregarines. Two new monocystid genera Cephalocystis and Dendrocystis. Parasitology 52, 115.CrossRefGoogle Scholar
Revel, J. P. & Karnovsky, M. J., (1967). Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. Journal of Cell Biology 33, C7C12.CrossRefGoogle ScholarPubMed
Reynolds, E. S., (1963). The use of lead citrate at high pH as an electron-opaque stain in electron micrsocopy. Journal of Cell Biology 17, 208–13.CrossRefGoogle Scholar
Roots, B. I., (1955). The water relations of earthworms. Journal of Experimental Biology 32, 766–74.CrossRefGoogle Scholar
Ryley, J. F., (1967). Carbohydrates and respiration. In Chemical Zoology (eds. Florkin, M. and Scheer, B. T.), vol. 1: Protozoa. New York: Academic Press.Google Scholar
Sabatini, D. D., Bensch, K., & Barnett, R. J., (1963). Cyto-ehemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. Journal of Cell Biology 17, 1958.CrossRefGoogle ScholarPubMed
Schrevel, J., & Vivier, E., (1966). ÉStude de l'ultrastructure et du rôle de la région antérieure (mucron et epimerite) de gregarines parasites d'annélides polychètes. Protistologica 2 (3), 1728.Google Scholar
Stempak, J. G., & Ward, R. T., (1964). An improved staining method for electron microscopy. Journal of Cell Biology 22, 697–9.CrossRefGoogle ScholarPubMed
Troisi, R. A., (1933). Studies on some acephaline gregarines of some oligochaete annelids. Transactions of the American Microscopical Society 52, 326–44.CrossRefGoogle Scholar
Troisi, R. A., (1940). Further studies on Nematocystis elmassiani (Protozoa: Sporozoa) from oligochaete annelids. Journal of Morphology 66, 561–76.CrossRefGoogle Scholar
Trowell, O. A., (1966). Ultrastructural changes in lymphocytes exposed to noxious agents in vitro. Quarterly Journal of experimental Physiology 51, 207–20.CrossRefGoogle ScholarPubMed
Vinckier, D., (1969). Organisation ultrastructurale corticale de quelques monocystidées parasites du ver oligochète Lumbricus terristris L. Protistologica 5 (4), 505–17.Google Scholar
Vinckier, D., & Vivier, E., (1968). Organisation ultrastructurale corticale de la gregarine Monocystis herculea. Compte rendu hebdomadaire des séances de l'Académie des sciences, Paris 266, 1737–9.Google Scholar
Warner, F. D., (1968). The fine structure of Rhynchocystis pilosa (Sporozoa — Eugregarinida). Journal of Protozoology 15, 5973.CrossRefGoogle Scholar
Weiner, J., Spiro, D., & Lowenstein, W. R., (1964). Studies on an epithelial (gland) cell junction. II. Surface structure. Journal of Cell Biology 22, 587–98.CrossRefGoogle Scholar
Willbrandt, W., & Rosenberg, P., (1961). The concept of carrier transport and its corollaries in pharmacology. Pharmacological Reviews 13, 109–83.Google Scholar