Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T04:10:06.540Z Has data issue: false hasContentIssue false

A glycoprotein specific to the amphids of Meloidogyne species

Published online by Cambridge University Press:  06 April 2009

G. R. Stewart
Affiliation:
Department of Biology, Imperial College, Silwood Park, Ascot, BerksSL5 7PY Entomology and Nematology Department, AFRC IACR, Rothamsted Experimental Station, Harpenden Herts AL5 2JQ
R. N. Perry
Affiliation:
Entomology and Nematology Department, AFRC IACR, Rothamsted Experimental Station, Harpenden Herts AL5 2JQ
J. Alexander
Affiliation:
Department of Immunology, The Todd Centre, University of Strathclyde, Glasgow G4 0NR
D. J. Wright*
Affiliation:
Department of Biology, Imperial College, Silwood Park, Ascot, BerksSL5 7PY
*
*Reprint request to Dr D. J. Wright, Department of Biology, Imperial College, Silwood Park, Ascot, Berks SL5 7PY.

Summary

Indirect immunofluorescence studies using a rabbit polyclonal antiserum have been used to localize the presence of a 32 kDa glycoprotein in the region of the amphids of 2nd-stage juveniles of the root-knot nematode, Meloidogyne incognita. Similar immunoreactivity was also demonstrated in 5 other Meloidogyne species but was not found in representatives of 8 other nematode genera including the closely related cyst nematodes (Globodera and Heterodera). Immunoelectron microscopical studies have shown that the immunoreactivity in M. incognita is associated with the secretory material filling the amphidial channel and probably with the sheath cell.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aumann, J. & Wyss, U. (1989). Histochemical studies on exudates of Heterodera schactii (Nematoda: Heteroderidae) males. Revue de Nématologie 12, 309–15.Google Scholar
Bargmann, C. I., Thomas, J. H. & Horvitz, H. R. (1990). Chemosensory cell function in the behavior and development of Caenorhabditis elegans. In Cold Spring Harbor Symposia on Quantitative Biology, vol. 55, pp. 529–38, Cold Spring Harbor Laboratory Press.Google Scholar
Bird, A. F. (1966). Esterases in the Genus Meloidogyne. Nematologica 12, 359–61.CrossRefGoogle Scholar
Bird, A. F. & Bird, J. (1991). The Structure of Nematodes 2nd Edn.San Diego: Academic Press.Google Scholar
Bird, A. F., Bonig, I. & Bacic, A. (1989). Factors affecting the adhesion of micro-organisms to the surfaces of plant-parasitic nematodes. Parasitology 98, 155–64.CrossRefGoogle Scholar
Endo, B. Y. (1978). Feeding plug formation in soybean roots infected with soybean cyst nematode. Phytopathology 68, 23–6.CrossRefGoogle Scholar
Forrest, J. M. S. & Robertson, W. M. (1986). Characterization and localization of saccharides on the head region of four populations of the potato cyst nematode Globodera rostochiensis and G. pallida. Journal of Nematology 18, 23–6.Google ScholarPubMed
Jones, J. T. (1991). Aspects of the structure and function of the anterior sense organs of Globodera rostochiensis Ph.D. thesis, University College of Wales, Aberystwyth.Google Scholar
Jones, J. T. & Ap Gwynn, I. (1991). A method for rapid fixation and dehydration of nematode tissue for transmission electron microscopy. Journal of Microscopy 164, 4351.CrossRefGoogle Scholar
Jones, J. T., Perry, R. N. & Johnston, M. R. L. (1991). Electrophysiological recordings of electrical activity and responses to stimulants from Globodera rostochiensis and Syngamus trachea. Revue de Nématologie 14, 467–73.Google Scholar
Kyhse-Anderson, J. (1984). Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. Journal of Biochemical and Biophysiological Methods 10, 203–9.CrossRefGoogle Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Luc, M., Bridge, J. & Sikora, R. (1990). Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. C.A.B.I., Wallingford, U.K.Google Scholar
McClure, M. A. & Stynes, B. A. (1988). Lectin binding sites on the amphidial exudates of Meloidogyne. Journal of Nematology 20, 321–6.Google ScholarPubMed
McLaren, D. J. (1976). Nematode sense organs. Advances in Parasitology 14, 195265.CrossRefGoogle ScholarPubMed
Okamoto, H. & Thomson, J. N. (1985). Monoclonal antibodies which distinguish certain classes of neuronal and supporting cells in the nervous tissue of the nematode Caenorhabditis elegans. Journal of Neuroscience 5, 643–53.CrossRefGoogle ScholarPubMed
Pertel, R., Paran, N. & Mattern, C. (1976). Caenorhabditis elegans: localisation of cholinesterase associated with anterior nematode structures. Experimental Parasitology 39, 401–14.CrossRefGoogle ScholarPubMed
Trett, M. & Perry, R. N. (1985). Functional and evolutionary implications of the anterior sensory anatomy of a species of root lesion nematode (genus Pratylenchus). Revue de Nématologie 8, 341–55.Google Scholar
Vogt, R. G. (1987). The molecular basis of pheromone reception; its influence on behavior. In Pheromone Biochemistry (ed. Prestwich, G. D. & Blomquist, G. J.), pp. 385431. New York: Academic Press.Google Scholar
Vogt, R. G., Prestwich, G. D. & Lerner, M. R. (1991). Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. Journal of Neurobiology 22, 7484.CrossRefGoogle ScholarPubMed
Wright, D. J., Roberts, I. T. J. & Evans, S. G. (1989). Effect of the nematicide oxamyl on lipid utilization and infectivity in Globodera rostochiensis. Parasitology 98, 151–4.CrossRefGoogle Scholar
Wright, K. A. (1983). Nematode chemosensilla: form and function. Journal of Nematology 15, 151–8.Google ScholarPubMed
Zuckermann, B. M. & Jansson, H.-B. (1984). Nematode chemotaxis and mechanisms of host/prey recognition. Annual Review of Phytopathology 22, 95113.CrossRefGoogle Scholar