Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T18:43:07.810Z Has data issue: false hasContentIssue false

GIS tools for tick and tick-borne disease occurrence

Published online by Cambridge University Press:  19 April 2005

M. DANIEL
Affiliation:
School of Public Health, Institute of Postgraduate Medical Education, Prague, Czech Republic Centre of Epidemiology, National Institute of Public Health, Prague, Czech Republic
J. KOLÁŘ
Affiliation:
Department of Applied Geoinformatics, Faculty of Sciences, Charles University, Prague, Czech Republic
P. ZEMAN
Affiliation:
Regional Centre of Hygiene, Prague, Czech Republic

Abstract

Geographic information systems (GIS), their fundamental components and technologies are described. GIS is a computer-based system enabling the storage, integration, query, display and analysis of data using information on data location. Further, remote sensing (RS) methods and their application in landscape characterization are described. Landscape pattern analysis, combined with statistical analysis, allows the determination of landscape predictors of disease risk. This makes RS/GIS a powerful set of tools for disease surveillance, enabling the prediction of potential disease outbreaks and targeting intervention programs. The ‘pre-GIS era’ is briefly described including the early mapping of tick distribution, analyses and the display of biogeographical and medical data. The theory of natural focality of diseases (NFD) is explained and its significance in tick-borne diseases (TBD) research is discussed. Many problems of tick ecology and TBD epidemiology and epizootology have been addressed by means of GIS and examples of these studies are presented and discussed.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BALÁT, F. & ROSICKÝ, B. ( 1954). Birds in lowland forests, their role and importance for the existence of natural foci of diseases. Československá parasitologie 1, 2244. (In Czech.)Google Scholar
BARNES, C. M. ( 1991). An historical perspective on the applications of remote sensing to public health. Preventive Veterinary Medicine 11, 163166.CrossRefGoogle Scholar
BECK, L. R., LOBITZ, B. M. & WOOD, B. L. ( 2000). Remote sensing and human health: new sensors and new opportunities. Emerging Infectious Diseases 6, 217227.CrossRefGoogle Scholar
BENDA, R. ( 1958). The common tick Ixodes ricinus L. as a reservoir and vector of tick-borne encephalitis. I. Survival of the virus (strain B 3) during the development of the tick under laboratory conditions. Journal of Hygiene, Epidemiology, Microbiology and Immunology 2, 314330.Google Scholar
BITHELL, J. F. ( 1990). An application of density estimation to geographical epidemiology. Statistics in Medicine 9, 691701.CrossRefGoogle Scholar
BLAšKOVIČ, D. ( 1967). Studies on tick-borne encephalitis. Bulletin of the World Health Organization 36 (Suppl. 1), 195.Google Scholar
CAREY, A. B., McLEAN, R. G. & MAUPIN, G. O. ( 1980). The structure of a Colorado tick fever ecosystem. Ecological Monographs 50, 131151.CrossRefGoogle Scholar
CDC – CENTERS FOR DISEASE CONTROL AND PREVENTION ( 1994). Addressing Emerging Infectious Disease Threats: A Strategy for the United States. Atlanta, GA: U.S. Department of Health and Human Services, CDC.
CDC – CENTERS FOR DISEASE CONTROL AND PREVENTION ( 1998). Preventing Emerging Infectious Diseases: A Strategy for the 21st Century. Atlanta, GA: U.S. Department of Health and Human Services, CDC.
CHAPUT, E. K., MEEK, J. I. & HEIMER, R. ( 2002). Spatial analysis of human granulocytic ehrlichiosis near Lyme, Connecticut. Emerging Infectious Diseases 8, 943948.CrossRefGoogle Scholar
CLIFF, A. D. & HAGGETT, P. ( 1988). Atlas of the Distribution of Diseases: Analytical Approaches to Epidemiological Data. Oxford, Blackwell.
COOPER, J. W. & HOULE, J. U. ( 1991). Modelling disease vector habitats using thematic mapper data: identifying Dermacentor variabilis habitats in Orange County, North Carolina. Preventive Veterinary Medicine 11, 353354.CrossRefGoogle Scholar
CUMMING, G. S. ( 2000 a). Using habitat models to map diversity: pan-African species richness of ticks (Acari: Ixodida). Journal of Biogeography 27, 425440.Google Scholar
CUMMING, G. S. ( 2000 b). Using between-model comparisons to fine-tune linear models of species ranges. Journal of Biogeography 27, 441455.Google Scholar
CUMMING, G. S. ( 2002). Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecology 83, 255268.CrossRefGoogle Scholar
DANIEL, M. & DUSBÁBEK, F. ( 1994). Micrometeorological and microhabitat factors affecting maintenance and dissemination of tick-borne diseases in the environment. In Ecological Dynamics of Tick-borne Zoonoses ( ed. Sonenshine, D. E. & Mather, T. N.), pp. 91138. New York and Oxford, Oxford University Press.
DANIEL, M. & KOLÁŘ, J. ( 1990). Using satellite data to forecast the occurence of the common tick Ixodes ricinus (L.). Journal of Hygiene, Epidemiology, Microbiology and Immunology 34, 243252.Google Scholar
DANIEL, M., KOLÁŘ, J., ZEMAN, P., PAVELKA, K. & SÁDLO, J. ( 1998). Predictive map of Ixodes ricinus high-incidence habitats and a tick-borne encephalitis risk assessment using satellite data. Experimental and Applied Acarology 22, 417433.CrossRefGoogle Scholar
DANIEL, M., KOLÁŘ, J., ZEMAN, P., PAVELKA, K. & SÁDLO, J. ( 1999). Tick-borne encephalitis and Lyme borreliosis: comparison of habitat risk assessments using satellite data. Central European Journal of Public Health 7, 3539.Google Scholar
DANIEL, M. & KŘÍŽ, B. ( 2002). Tick-borne Encephalitis in the Czech Republic: I. Predictive maps of Ixodes ricinus tick high-occurrence habitats and a tick-borne encephalitis risk assessment in Czech regions; II. Maps of tick-borne encephalitis incidence in the Czech Republic in 1971–2000. National Institute of Public Health, Prague. Project WHO/EC Climate Change and Adaptation Strategies for Human Health in Europe, EVK-2-2000-0070.
DANIELOVÁ, V., HOLUBOVÁ, J. & DANIEL, M. ( 2002). Tick-borne encephalitis virus prevalence in Ixodes ricinus ticks collected in high risk habitats of the South-Bohemian region of the Czech Republic. Experimental and Applied Acarology 26, 145151.CrossRefGoogle Scholar
DANIELOVÁ, V., HOLUBOVÁ, J., PEJČOCH, M. & DANIEL, M. ( 2002). Potential significance of transovarial transmission in the circulation of tick-borne encephalitis virus. Folia Parasitologia 49, 323325.CrossRefGoogle Scholar
DE GARINE-WICHATITSKY, M. ( 2000). Assessing infestation risk by vectors: spatial and temporal distribution of African ticks at the scale of a landscape. Annals of the New York Academy of Sciences 916, 223232.CrossRefGoogle Scholar
DIGGLE, P. J. ( 1983). Statistical Analysis of Spatial Point Patterns. London, Academic Press.
DISTER, S. W., FISH, D., BROS, S., FRANK, D. H. & WOOD, B. L. ( 1997). Landscape characterization of peridomestic risk for Lyme disease using satellite imagery. American Journal of Tropical Medicine and Hygiene 57, 687692.CrossRefGoogle Scholar
DUFFY, D. C., CLARK, D. D., CAMPBELL, S. R., GURNEY, S., PERELLO, R. & SIMON, N. ( 1994). Landscape patterns of abundance of Ixodes scapularis (Acari: Ixodidae) on Shelter Island, New York. Journal of Medical Entomology 31, 875879.CrossRefGoogle Scholar
ESTRADA-PEÑA, A. ( 1999). Geostatistics and remote sensing using NOAA-AVHR satellite imagery as predictive tools in tick distribution and habitat suitability estimations for Boophilus microplus (Acari:Ixodidae) in South America. Veterinary Parasitology 81, 7382.CrossRefGoogle Scholar
ESTRADA-PEÑA, A. ( 2001 a). Distribution, abundance, and habitat preferences of Ixodes ricinus (Acari: Ixodidae) in northern Spain. Journal of Medical Entomology 38, 361370.Google Scholar
ESTRADA-PEÑA, A. ( 2001 b). Forecasting habitat suitability for ticks and prevention of tick-borne diseases. Veterinary Parasitology 98, 111132.Google Scholar
GERN, L., ESTRADA-PEÑA, A., FRANDSEN, F., GRAY, J. S., JAENSON, T. G. T., JONGEJAN, F., KAHL, O., KORENBERG, E., MEHL, R. & NUTTALL, P. A. ( 1998). European reservoir hosts of Borrelia burgdorferi sensu lato. Zentralblatt für Bakteriologie 287, 196204.CrossRefGoogle Scholar
GILOT, B. ( 1985). Bases biologiques, ecologiques et cartographiques pour l'etude des maladies transmises par les tiques (Ixodidae et Argasidae) dans les Alpes Francaises et leur avant-pays. Theses pour Docteur es-Sciences, Université de Grenoble.
GILOT, B., PAUTOU, G. & LACHET, B. ( 1981). La cartographie des populations de tiques exophiles a visée épidemiologique. Application a la fièvre boutonneuse méditerranéenne essai a 1/200000 dans la basse valleée du Rhône. Documents de Cartographie Ecologique, Grenoble 34, 103111.Google Scholar
GILOT, B., PAUTOU, G. & MONCADA, E. ( 1975). L'analyse de la végétation appliqué à la détection des populations de tiques exophiles dans le Sud-Est de la France; l'example d'Ixodes ricinus (Linné, 1758). Acta Tropica 32, 340347.Google Scholar
GILOT, B., PAUTOU, G., MONCADA, E., LACHET, B. & CHRISTIN, J. G. ( 1979). La cartographie des populations de tiques exophiles par le biais de la vegetation: bases écologiques, intérêt épidemiologique. Documents de Cartographie Ecologique, Grenoble 22, 6580.Google Scholar
GLASS, G. E., AMERASINGHE, F. P., MORGAN, J. M. & SCOTT, T. W. ( 1994). Predicting Ixodes scapularis abundance on white-tailed deer using geographic information systems. American Journal of Tropical Medicine and Hygiene 51, 538544.CrossRefGoogle Scholar
GLASS, G. E., SCHWARTZ, B. S., MORGAN, J. M., JOHNSON, D. T., NOY, P. M. & ISRAEL, E. ( 1995). Environmental risk factors for Lyme disease identified with Geographic Information Systems. American Journal of Public Health 85, 944948.CrossRefGoogle Scholar
GRAY, J. S., KAHL, O., ROBERTSON, J. N., DANIEL, M., ESTRADA-PEÑA, A., GETTINBY, G., JAENSON, T. G. T., JENSEN, P., JONGEJAN, F., KORENBER, G. E., KURTENBACH, K. & ZEMAN, P. ( 1998). Lyme borreliosis habitat assessment. Zentralblatt für Bakteriologie-International Journal of Medical Microbiology, Virology, Parasitology and Infectious Diseases 287, 211228.CrossRefGoogle Scholar
GREEN, R. M., ROGERS, D. J. & RANDOLPH, S. E. ( 2000). The use of satellite imagery to predict foci of tick-borne encephalitis. Proceedings of the 3rd International Conference ‘Ticks and Tick-borne Pathogens: Into the 21st Century’ ( ed. Kazimírová, M., Labuda, M. & Nuttall, P. A.), pp. 209213. Institute of Zoology, Slovak Academy of Sciences, Bratislava.
GUERRA, M., WALKER, E., JONES, C., PASKEWICZ, S., CORTINAS, M. R., STANCIL, A., BECK, L., BOBO, M. & KITRON, U. ( 2002). Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerging Infectious Diseases 8, 289297.CrossRefGoogle Scholar
HAY, S. I., RANDOLPH, S. E. & ROGERS, D. J. (ed.) ( 2000). Remote Sensing and Geographical Information Systems in Epidemiology. Advances in Parasitology 47, 1357.Google Scholar
HEJNÝ, S. & ROSICKÝ, B. ( 1965). Beziehungen der Encephalitis zu den natürlichen Pflanzengesellschaften. Biosoziologie (Herausgebener R. Tuexen), pp. 341347. Den Haag, Junk Verlag.
HUGH-JONES, M. ( 1989). Applications of remote sensing to the identification of the habitats of parasites and disease vectors. Parasitology Today 5, 244251.CrossRefGoogle Scholar
HUGH-JONES, M. (ed.) ( 1991). Applications of remote sensing to epidemiology and parasitology. Preventive Veterinary Medicine 11, 155376.Google Scholar
HUGH-JONES, M., BARRE, N., NELSON, G., WEHNES, K., WARNER, J., GARVIN, J. & GARRIS, G. ( 1992). Landsat-TM identification of Amblyomma variegatum (Acari: Ixodidae) habitats in Guadeloupe. Remote Sensing of Environment 40, 4355.CrossRefGoogle Scholar
HUNGERFORD, L. L. ( 1991). Use of spatial statistics to identify and test significance in geographic disease patterns. Preventive Veterinary Medicine 11, 237242.CrossRefGoogle Scholar
IMMUNO, A. G. ( 1997). Tick-borne Encephalitis (TBE) and its Immunoprophylaxis. Immuno Ag, Vienna.
ISAAKS, E. H. & SRIVASTAVA, R. M. ( 1989). Applied Geostatistics. Oxford, Oxford University Press.
JONES, C. G., OSTFELD, R. S., RICHARD, M. P., SCHAUBER, E. M. & WOLFF, J. O. ( 1998). Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279, 10231026.CrossRefGoogle Scholar
JONES, L. D., DAVIES, C. R., STEELE, G. M. & NUTTALL, P. A. ( 1987). A novel mode of arbovirus transmission involving a non-viremic host. Science 237, 775777.CrossRefGoogle Scholar
JOURNEL, A. G. & HUIBREGTS, C. J. ( 1978). Mining Geostatistics. New York, Academic Press.
KELSALL, J. E. & DIGGLE, P. J. ( 1995). Non-parametric estimation of spatial variation in relative risk. Statistics in Medicine 14, 23352342.CrossRefGoogle Scholar
KITRON, U., BOUSEMAN, J. K. & JONES, C. J. ( 1991). Use of the ARC/INFO GIS to study the distribution of Lyme disease ticks in an Illinois county. Preventive Veterinary Medicine 11, 243248.CrossRefGoogle Scholar
KITRON, U., JONES, C. J., BOUSEMAN, J. K., NELSON, J. A. & BAUMGARTNER, D. L. ( 1992). Spatial analysis of the distribution of Ixodes dammini (Acari: Ixodidae) on white-tailed deer in Ogle County, Illinois. Journal of Medical Entomology 29, 259266.CrossRefGoogle Scholar
KITRON, U. & KAZMIERCZAK, J. J. ( 1997). Spatial analysis of the distribution of Lyme disease in Wisconsin. American Journal of Epidemiology 145, 558566.CrossRefGoogle Scholar
KITRON, U. & MANNELLI, A. ( 1994). Modeling the ecological dynamics of tick-borne zoonoses. In Ecological Dynamics of Tick-borne Zoonoses. ( ed. Sonenshine, D. E. & Mather, T. N.), pp. 198239. New York and Oxford, Oxford University Press.
KOLONIN, G. V. ( 1978). World Distribution of Ixodid Ticks (Genus Haemaphysalis). Moscow, Publishing House Nauka. (In Russian.)
KOLONIN, G. V. ( 1981). World Distribution of Ixodid Ticks (Genus Ixodes). Moscow, Publishing House Nauka. (In Russian.)
KOLONIN, G. V. ( 1983). World Distribution of Ixodid Ticks (Genera Hyalomma, Aponomma, Amblyomma). Moscow, Publishing House Nauka. (In Russian.)
KOLONIN, G. V. ( 1984). World Distribution of Ixodid Ticks (Genera Dermacentor, Anocentor, Cosmiomma, Dermacentonomma, Nosomma, Rhipicentor, Rhipicephalus, Boophilus, Margaropus, Anomalohimalaya). Moscow, Publishing House Nauka. (In Russian.)
KORENBERG, E. I. ( 1973). Methodological principles of mapping the occurrence of Ixodid ticks. Proceedings of 3rd International Congress of Acarology, Prague ( ed. Daniel, M. & Rosický, B.), pp. 575577. Prague, Academia, Publishing House of Czechoslovak Academy of Sciences.CrossRef
KORENBERG, E. I. ( 1983). What is a Natural Focus? Moscow, Publishing House Znanie. (In Russian.)
KORENBERG, E. I. & KOVALEVSKY, J. V. ( 1981). Regional classification of the tick-borne encephalitis area of distribution. Scientific and Technical Results, Series Medical Geography 11, 1148. (In Russian.)Google Scholar
KREJCIR, P. ( 2000). A maximum likelihood estimator of an inhomogeneous Poisson point process intensity using beta splines. Kybernetika 36, 455464.Google Scholar
KUCHERUK, V. V. & ROSICKÝ, B. ( 1984). Natural focality of infectious diseases – basic terms and its explanation. Medical Parasitology and Parasitological Diseases 2, 716. (In Russian.)Google Scholar
KULLDORFF, M. & NAGARWALLA, N. ( 1995). Spatial disease clusters: detection and inference. Statistics in Medicine 14, 799810.CrossRefGoogle Scholar
KUZIKOV, I. V., KORENBERG, E. I., KOVALEVSKY, J. V. & RODMAN, L. S. ( 1982). The principles of average scale mapping of distribution of the Ixodid ticks on the basis of aerophoto-materials. Zoologiocheskii Zhurnal 61, 18021814. (In Russian.)Google Scholar
LAM, N. S. ( 1983). Spatial interpolation methods: a review. The American Geographer 10, 129149.CrossRefGoogle Scholar
LAWSON, A., BIGGERI, A., BÖHNING, D., LESAFFRE, E., VIEL, J.-F. & BERTOLLINI, R. ( 1999). Disease Mapping and Risk Assessment for Public Health. Chichester, John Wiley & Sons Ltd.
LAWSON, A. B. ( 2001). Statistical Methods in Spatial Epidemiology. Chichester, John Wiley & Sons Ltd.
LAWSON, A. B. & WILLIAMS, F. L. R. ( 1993). Applications of extraction mapping in environmental epidemiology. Statistics in Medicine 12, 12491258.CrossRefGoogle Scholar
MARTYN, K. P. ( 1988). Provisional Atlas of the Ticks (Ixodoidea) of the British Isles. Huntingdon, NERC, Institute Terrestrial Ecology.
MEADE, M. S., FLORIN, J. W. & GESLER, W. M. ( 1988). Medical Geography. New York, The Guilford Press.
MERLER, S., FURLANELLO, C., CHEMINI, C. & NICOLINI, G. ( 1996). Classification tree methods for analysis of mesoscale distribution of Ixodes ricinus (Acari: Ixodidae) in Trentino, Italian Alps. Journal of Medical Entomology 33, 888893.CrossRefGoogle Scholar
MORAN, P. A. P. ( 1950). Notes on continuous stochastic phenomena. Biometrica 37, 1723.CrossRefGoogle Scholar
NICHOLSON, M. C. & MATHER, T. N. ( 1996). Methods for evaluating Lyme disease risk using geographic information systems and geospatial analysis. Journal of Medical Entomology 33, 711720.CrossRefGoogle Scholar
NORVAL, R. A. I., PERRY, B. D., KRUSKA, R. & KUNDERT, K. ( 1991). The use of climate data interpolation in estimating the distribution of Amblyomma variegatum in Africa. Preventive Veterinary Medicine 11, 365366.CrossRefGoogle Scholar
O'CONNELL, S., GRANSTRÖM, M., GRAY, J. S. & STANEK, G. ( 1998). Epidemiology of European Lyme Borreliosis. Zentralblatt für Bakteriologie – International Journal of Medical Microbiology, Virology, Parasitology and Infectious Diseases 287, 229240.CrossRefGoogle Scholar
ODEN, N. ( 1995). Adjusting Moran's I for population density. Statistics in Medicine 14, 1726.CrossRefGoogle Scholar
PAVLOVSKY, E. N. ( 1939). Natural focality of infectious diseases. Vestnik Akademii Nauk SSSR 10, 98108. (In Russian.)Google Scholar
PAVLOVSKY, E. N. ( 1946–1948). Manual of Human Parasitology, Vol. I–II. Moscow-Leningrad, Publishing House of the Academy of Sciences USSR. (In Russian.)
PAVLOVSKY, E. N. ( 1964). Natural Nidality of Transmissible Diseases in Relation to Landscape Epidemiology of Zooanthroponoses. Moscow, Peace Publishers.
PERRY, B. D., KRUSKA, R., LESSARD, R., NORVAL, R. A. I. & KUNDERT, K. ( 1991). Estimating the distribution and abundance of Rhipicephalus appendiculatus in Africa. Preventive Veterinary Medicine 11, 261268.CrossRefGoogle Scholar
PROKHOROV, B. B., BAIBORODIN, V. N., VERSHININA, T. A. & SOTCHAVY, V. V. ( 1974). Experience in Ixodid Ticks Mapping on the Territory of Asiatic Russia. Irkutsk, Academy of Sciences of the USSR. (In Russian.)
RADVAN, R., HANZÁK, J., HEJNÝ, S., REHN, F. & ROSICKÝ, B. ( 1960). Demonstration of elementary foci of tick-borne infections on the basis of microbiological, parasitological and biocenological investigations. Journal of Hygiene, Epidemiology, Microbiology and Immunology 4, 8193.Google Scholar
RAND, P. W., LACOMBE, E. H., SMITH, R. P., GENSHEIMER, K. & DENNIS, D. T. ( 1996). Low seroprevalence of human Lyme disease near a focus of high entomologic risk. American Journal of Tropical Medicine and Hygiene 55, 160164.CrossRefGoogle Scholar
RANDOLPH, S. E. ( 1993). Climate, satellite imagery and seasonal abundance of the tick Rhipicephalus appendiculatus in Southern Africa: a new perspective. Medical and Veterinary Entomology 7, 243258.CrossRefGoogle Scholar
RANDOLPH, S. E. ( 2000). Ticks and tick-borne diseases systems in space and from space. In Remote Sensing and Geographical Information Systems in Epidemiology, Advances in Parasitology 47 ( ed. Baker, J. R., Muller, R. & Rollinson, D.), pp. 217243. London, Academic Press.CrossRef
RANDOLPH, S. E., MIKLISOVÁ, D., LYSÝ, D., ROGERS, D. J. & LABUDA, M. ( 1999). Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 118, 177186.CrossRefGoogle Scholar
RANDOLPH, S. E. & ROGERS, D. J. ( 2000). Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proceedings of the Royal Society of London Series B – Biological Sciences 267, 17411744.CrossRefGoogle Scholar
ROBINSON, T. P. ( 2000). Spatial statistics and geographical information systems in epidemiology and public health. In Remote Sensing and Geographical Information Systems in Epidemiology, Advances in Parasitology 47 ( ed. Baker, J. R., Muller, R. & Rollinson, D.), pp. 81127. London, Academic Press.CrossRef
ROGERS, A. ( 1974). Statistical Analysis of Spatial Dispersion. The Quadrat Method. London, Pion.
ROGERS, D. J. ( 2000). Satellites, space, time and the African trypanosomiases. In Remote Sensing and Geographical Information Systems in Epidemiology, Advances in Parasitology 47 ( ed. Baker, J. R., Muller, R. & Rollinson, D.), pp. 129171. London, Academic Press.CrossRef
ROGERS, D. J. & RANDOLPH, S. E. ( 1993). Distribution of tsetse and ticks in Africa, past, present and future. Parasitology Today 9, 266271.CrossRefGoogle Scholar
ROSICKÝ, B. ( 1967). Natural foci of diseases. In Infectious DiseasesTheir Evolution and Eradication ( ed. Cockburn, T. A.), pp. 108126. Springfield, Illinois, USA, Charles C. Thomas Publisher.
ROSICKÝ, B. & DANIEL, M. ( 1989). Medical Entomology and Environment. Publishing House Academia, Prague. (In Czech.)
SONENSHINE, D. E., PETERS, A. H. & STOUT, J. I. ( 1972). Rocky Mountain spotted fever in relation to vegetation in the Eastern United States, 1951–1971. American Journal of Epidemiology 96, 5969.CrossRefGoogle Scholar
SUTHERST, R. W. ( 2001). The vulnerability of animal and human health to parasites under global change. International Journal for Parasitology 31, 933948.CrossRefGoogle Scholar
SUTHERST, R. W. & MAYWALD, G. F. ( 1985). A computerised system for matching climates in ecology. Agriculture Ecosystems and Environment 13, 281299.CrossRefGoogle Scholar
THOMSEN, I. ( 1991). Population data for small area studies. In Data Requirements and Methods for Analysing Spatial Patterns of Disease in Small Areas, pp. 1014. Copenhagen, WHO EUR/ICP/CEH 087/A.
VAN BEURDEN, A. U. C. J. & HILFERINK, M. T. A. ( 1993). Spatial Analysis with GIS at RIVM. A background overview of spatial analysis within GIS in research for environment and public health. National Institute of Public Health and Environmental Protection, report No 421503002, pp. 142, Bilthoven.
VERSHININA, T. A. ( 1985). Mapping of Ixodid Ticks Distribution and Seasonal Activity. Novosibirsk, Publishing House Nauka. (In Russian.)
WHITTIE, P. S., DRANE, W. & ALDRICH, T. E. ( 1996). Classification methods for denominators in small areas. Statistics in Medicine 15, 19211926.3.0.CO;2-3>CrossRefGoogle Scholar
ZEMAN, P. ( 1997). Objective assessment of risk maps of tick-borne encephalitis and Lyme borreliosis based on spatial patterns of located cases. International Journal of Epidemiology 26, 11211130.CrossRefGoogle Scholar
ZEMAN, P. ( 1998). Borrelia-infection rates in tick and insect vectors accompanying human risk of acquiring Lyme borreliosis in a highly endemic region in Central Europe. Folia Parasitologica 45, 319325.Google Scholar
ZEMAN, P. ( 1999). A spatial analysis of uncertain occurence of Lyme borreliosis. Zentralblatt für Bakteriologie – International Journal of Medical Microbiology, Virology, Parasitology and Infectious Diseases 289, 717719.CrossRefGoogle Scholar
ZEMAN, P., VITKOVA, V. & MARKVART, K. ( 1990). Join occurence of tick-borne encephalitis and Lyme borreliosis in the Central Bohemian region of Czechoslovakia. Československá Epidemiologie, Mikrobiologie a Imunologie 39, 95105.Google Scholar