Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T11:00:18.879Z Has data issue: false hasContentIssue false

Genetic structure in natural populations of flukes and snails: a practical approach and review

Published online by Cambridge University Press:  10 January 2003

P. JARNE
Affiliation:
Centre d'Ecologie Fonctionnelle et Evolutive, UPR 9056 du CNRS, 1919 route de Mende, 34295 Montpellier cedex 5, France
A. THÉRON
Affiliation:
Centre de Biologie et Ecologie Tropicale et Méditerranéenne, UMR 5555 du CNRS, Université de Perpignan, Avenue de Villeneuve, 66860 Perpignan cedex, France

Abstract

Several aspects of the coevolutionary dynamics in host-parasite systems may be better quantified based on analyses of population structure using neutral genetic markers. This includes, for example, the migration rates of hosts and parasites. In this respect, the current situation, especially in fluke-snail systems is unsatisfactory, since basic population genetics data are lacking and the appropriate methodology has rarely been used. After reviewing the forces acting on population structure (e.g. genetic drift or the mating system) and how they can be analysed in models of structured populations, we propose a simplified, indicative framework for conducting analyses of population structure in hosts and parasites. This includes consideration of markers, sampling, data analysis, comparison of structure in hosts and parasites and use of external data (e.g. from population dynamics). We then focus on flukes and snails, highlighting important biological traits with regard to population structure. The few available studies indicate that asexual amplification of flukes within snails strongly influences adult flukes populations. They also show that the genetic structure among populations in strongly affected by traits in other than snails (e.g. definitive host dispersal behaviour), as snails populations have limited migration. Finally more studies would allow us to deepen our current understanding of selective interference between flukes and snails (e.g. manipulation of host mating system by parasites), and evaluate how this affect population structure at neutral markers.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)