Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T13:45:44.343Z Has data issue: false hasContentIssue false

Factors affecting Culicoides species composition and abundance in avian nests

Published online by Cambridge University Press:  15 June 2009

J. MARTÍNEZ-de la PUENTE*
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), J. Gutiérrez Abascal 2, E-28006, Madrid, Spain
S. MERINO
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), J. Gutiérrez Abascal 2, E-28006, Madrid, Spain
G. TOMÁS
Affiliation:
Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, AP 70-275, Mexico D.F., 04510Mexico
J. MORENO
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), J. Gutiérrez Abascal 2, E-28006, Madrid, Spain
J. MORALES
Affiliation:
Departamento de Ecoloxía e Bioloxía Animal, Facultade de Biología, Universidade de Vigo, Vigo 36310, Spain
E. LOBATO
Affiliation:
Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), J. Gutiérrez Abascal 2, E-28006, Madrid, Spain
S. TALAVERA
Affiliation:
Fundació CReSA/Entomologia, Universitat Autònoma de Barcelona, Campus de Bellaterra, edifici V, 08193 Bellaterra, Barcelona, Spain
V. SARTO i MONTEYS
Affiliation:
Direcció General d'Agricultura i Ramaderia, Generalitat de Catalunya, Avinguda Meridiana, 38, 5a Planta, 08018 Barcelona, Spain
*
*Corresponding author: Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), J. Gutiérrez Abascal 2, E-28006, Madrid, Spain. Tel: +34 91411 1328. Fax: +34 91564 5078. E-mail: [email protected]

Summary

Mechanisms affecting patterns of vector distribution among host individuals may influence the population and evolutionary dynamics of vectors, hosts and the parasites transmitted. We studied the role of different factors affecting the species composition and abundance of Culicoides found in nests of the blue tit (Cyanistes caeruleus). We identified 1531 females and 2 males of 7 different Culicoides species in nests, with C. simulator being the most abundant species, followed by C. kibunensis, C. festivipennis, C. segnis, C. truncorum, C. pictipennis and C. circumscriptus. We conducted a medication×fumigation experiment randomly assigning bird's nests to different treatments, thereby generating groups of medicated and control pairs breeding in fumigated and control nests. Medicated pairs were injected with the anti-malarial drug Primaquine diluted in saline solution while control pairs were injected with saline solution. The fumigation treatment was carried out using insecticide solution or water for fumigated and control nests respectively. Brood size was the main factor associated with the abundance of biting midges probably because more nestlings may produce higher quantities of vector attractants. In addition, birds medicated against haemoparasites breeding in non-fumigated nests supported a higher abundance of C. festivipennis than the rest of the groups. Also, we found that the fumigation treatment reduced the abundance of engorged Culicoides in both medicated and control nests, thus indicating a reduction of feeding success produced by the insecticide. These results represent the first evidence for the role of different factors in affecting the Culicoides infracommunity in wild avian nests.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atkinson, C. T., Greiner, E. C. and Forrester, D. J. (1983). Experimental vectors of Haemoproteus meleagridis Levine from wild turkeys in Florida. Journal of Wildlife Diseases 19, 366568.CrossRefGoogle ScholarPubMed
Banbura, J., Blondel, J., de Wilde-Lambrechts, H. and Perret, PH. (1994). Why do female Blue Tits (Parus caeruleus) bring fresh plants to their nests? Journal of Ornithology 136, 217221.CrossRefGoogle Scholar
Beckenbach, A. T. and Borkent, A. (2003). Molecular analysis of the biting midges (Diptera: Ceratopogonidae), based on mitochondrial cytochrome oxidase subunit 2. Molecular Phylogenetics and Evolution 27, 2135.CrossRefGoogle ScholarPubMed
Bennett, G. F. (1960). On some ornithophilic blood-sucking diptera in Algonquin Park, Ontario, Canada. Canadian Journal of Zoology 38, 377389.CrossRefGoogle Scholar
Bhasin, A., Moredue (Luntz), A. J. and Mordue, W. (2000 a). Electrophysiological and behavioural identification of host kairomones as olfactory cues for Culicoides impunctatus and C. nubeculosus. Physiological Entomology 25, 6–16.CrossRefGoogle Scholar
Bhasin, A., Moredue (Luntz), A. J. and Mordue, W. (2000 b). Responses of the biting midge Culicoides impunctatus to acetone, CO2 and 1-octen-3-ol in a wind tunnel. Medical and Veterinary Entomology 14, 300307.CrossRefGoogle Scholar
Bishop, A. L., McKenzie, H. J., Barchia, M. and Harris, A. M. (1996). Effect of temperature regimes on the development, survival and emergence of Culicoides brevitarsis Kieffer (Diptera: Ceratopogonidae) in bovine dung. Australian Journal of Entomology 35, 361368.CrossRefGoogle Scholar
Blackwell, A., Dyer, C., Mordue (Luntz), A. J., Wadhams, L. J. and Mordue, W. (1994). Field and laboratory evidence for a volatile pheromone produced by parous females of the Scottish biting midge, Culicoides impunctatus. Physiological Entomology 19, 251257.CrossRefGoogle Scholar
Blackwell, A., Dyer, C., Mordue (Luntz), A. J., Wadhams, L. J. and Mordue, W. (1996). The role of 1-octen-3-ol as a host-odour attractant for the biting midge, Culicoides impunctatus Goetghebuer, and interactions of 1-octen-3-ol with a volatile pheromone produced by parous female midges. Physiological Entomology 21, 1519.CrossRefGoogle Scholar
Bowen, M. F. (1991). The sensory physiology of host-seeking behavior in mosquitoes. Annual Review of Entomology 36, 139158.CrossRefGoogle ScholarPubMed
Braverman, Y. and Chizov-Ginzburg, A. (1997). Repellency of synthetic and plant-derived preparations for Culicoides imicola. Medical and Veterinary Entomology 11, 355360.CrossRefGoogle ScholarPubMed
Braverman, Y., Chizov-Ginzburg, A. and Mullens, B. A. (1999). Mosquito repellent attracts Culicoides imicola (Diptera: Ceratopogonidae). Journal of Medical Entomology 36, 113115.CrossRefGoogle ScholarPubMed
Braverman, Y., Wegis, M. C. and Mullens, B. A. (2000). Response of Culicoides sonorensis (Diptera: Ceratopogonidae) to 1-octen-3-ol and three plant-derived repellent formulation in the field. Journal of the American Mosquito Control Association 16, 158163.Google ScholarPubMed
Braverman, Y., Boorman, J., Kremer, M. and Delecolle, J. C. (1976). Faunistic list of Culicoides (Diptera, Ceratopogonidae) from Israel. Cahiers ORSTOM, serie Entomologie medicale et Parasitologie 14, 179185.Google Scholar
Braverman, Y., Messaddeq, N., Lemble, C. and Kremer, M. (1996). Reevaluation of the taxonomic status of the Culicoides spp. (Diptera: Ceratopogonidae) from Israel and the Eastern Mediterranean and review of their potential medical and veterinary importance. Journal of the American Mosquito Control Association 12, 437445.Google ScholarPubMed
Bucher, E. H. (1988). Do birds use biological control against nest parasites? Parasitology Today 4, 13.CrossRefGoogle ScholarPubMed
Clark, L. (1991). The nest protection hypothesis: the adaptive use of plant secondary compounds by European starlings. In Bird–Parasite Interaction, Ecology, Evolution and Behaviour (ed. Loye, J. E. and Zuk, M.), pp. 204221. Oxford University Press, Oxford, UK.Google Scholar
Cowie, R. J. and Hinsley, S. A. (1988). Timing of return with green vegetation by nesting blue tits Parus caeruleus. Ibis 130, 553559.CrossRefGoogle Scholar
Darbro, J. M. and Harrington, L. C. (2007). Avian defensive behavior and blood-feeding success of the West Nile vector mosquito, Culex pipiens. Behavioral Ecology 18, 750757.CrossRefGoogle Scholar
Darbro, J. M., Dhondt, A. A., Vermeylen, F. M. and Harrington, L. C. (2007). Mycoplasma gallisepticum infection in House Finches (Carpodacus mexicanus) affects mosquito blood feeding patterns. American Journal of Tropical Medical and Hygiene 77, 488494.CrossRefGoogle ScholarPubMed
Delécolle, J. C. (1985). Nouvelle contribution a l'étude systematique et iconographique des espèces du genre Culicoides (Diptera: Ceratopogonidae) du Nord-Est de la France. Ph.D. thesis, Université Louis Pasteur de Strasbourg, ‘Vie et Terre’, France.Google Scholar
Delécolle, J. C. (2002). Ceratopogonidae. In Catálogo de los Diptera de España, Portugal y Andorra (Insecta). (ed. Carles-Tolrá Hjorth-Andersen, M.), pp. 2633. Monografias S.E.A., 8, Spain.Google Scholar
Desser, S. S. and Yang, Y. J. (1973). Sporogony of Leucocytozoon spp. in mammalophilic simuliids. Canadian Journal of Zoology 51, 793–793.CrossRefGoogle ScholarPubMed
Downes, J. A. (1958). The feeding habits of biting flies and their significance in classification. Annual Review of Entomology 3, 249266.CrossRefGoogle Scholar
Dyce, A. L. (1969). The recognition of nulliparous and parous Culicoides (Diptera: Ceratopogonidae) without dissection. Journal of the Australian Entomological Society 8, 1115.CrossRefGoogle Scholar
Edman, J. D., Webber, L. A. and Schmid, AA. (1974). Effect of host defenses on the feeding pattern of Culex nigripalpus when offered a choice of blood sources. Journal of Parasitology 60, 874883.CrossRefGoogle ScholarPubMed
Fallis, A. M. and Wood, D. M. (1957). Biting midges (Diptera: Ceratopogonidae) as intermediate hosts for Haemoproteus in ducks. Canadian Journal of Zoology 35, 425435.CrossRefGoogle Scholar
Garvin, M. C. and Greiner, E. C. (2003). Ecology of Culicoides (Diptera: Ceratopogonidae) in southcentral Florida and experimental Culicoides vectors of the avian hematozoan Haemoproteus danilewskyi Kruse. Journal of Wildlife Diseases 39, 170178.CrossRefGoogle ScholarPubMed
Gerry, A. C. and Mullens, B. A. (2000). Seasonal abundance and survivorship of Culicoides sonorensis (Diptera: Ceratopogonidae) at a Southern california dairy, with reference to potential bluetongue virus transmission and persistence. Journal of Medical Entomology 37, 675688.CrossRefGoogle Scholar
Gibson, G. and Torr, S. J. (1999). Visual and olfactory responses of haematophagous Diptera to host stimuli. Medical and Veterinary Entomology 13, 223.CrossRefGoogle ScholarPubMed
Grant, A. J. and Kline, D. L. (2003). Electrophysiological responses from Culicoides (Diptera: Ceratopogonidae) to stimulation with carbon dioxide. Journal of Medical Entomology 40, 284293.CrossRefGoogle ScholarPubMed
Kettle, D. S. (1995). Medical and Veterinary Entomology. 2nd Edn.CAB International, Wallingford, UK.Google Scholar
Kremer, M. (1966). Contribution a l'etude du genre Culicoides Latreille particulierement en France. Encyclopedie d'Entomologie, serie A 39, 1299.Google Scholar
Lacroix, R., Mukabana, W. R., Gouagna, L. C. and Koella, J. C. (2005). Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biology 3, 15901593.CrossRefGoogle ScholarPubMed
Lafuma, L., Lambrechts, M. M. and Raymond, M. (2001). Aromatic plants in bird nests as a protection against blood-sucking flying insects? Behavioural Processes 56, 113120.CrossRefGoogle ScholarPubMed
Lobato, E., Merino, S., Moreno, J., Morales, J., Tomás, G., Martínez-de la Puente, J., Osorno, J. L., Kuchar, A. and Möstl, E. (2008). Corticosterone metabolites in blue tit and pied flycatcher droppings: effects of brood size, ectoparasites and temperature. Hormones and Behavior 53, 295305.CrossRefGoogle ScholarPubMed
Lysyk, T. J. and Danyk, T. (2007). Effect of temperature on life history parameters of adult Culicoides sonorensis (Diptera: Ceratopogonidae) in relation to geographic origin and vectorial capacity for Bluetongue virus. Journal of Medical Entomology 44, 741751.CrossRefGoogle ScholarPubMed
Mands, V., Kline, D. L. and Blackwell, A. (2004). Culicoides midge trap enhancement with animal odour baits in Scotland. Medical and Veterinary Entomology 18, 336342.CrossRefGoogle ScholarPubMed
Marquardt, W. C., Demaree, R. S. and Grieve, R. B. (2000). Parasitology and Vector Biology. 2nd Edn.Academic Press, San Diego, USA.Google Scholar
Martínez-de la Puente, J., Merino, S., Lobato, E., Rivero-de Aguilar, J., del Cerro, S., Ruiz-de-Castañeda, R. and Moreno, J. (2009). Does weather affect biting fly abundance in avian nests? Journal of Avian Biology (in the Press).CrossRefGoogle Scholar
Martínez-de la Puente, J., Merino, S., Tomás, G., Moreno, J., Morales, J., Lobato, E. and García-Fraile, S. (2007). Can the host immune system promote multiple invasions of erythrocytes in vivo? Differential effects of medication and host sex in a wild malaria-like model. Parasitology 134, 651655.CrossRefGoogle Scholar
Mellor, P. S., Boorman, J. and Baylis, M. (2000). Culicoides biting midges: their role as arbovirus vectors. Annual Review of Entomology 45, 307340.CrossRefGoogle ScholarPubMed
Merino, S., Moreno, J., Sanz, J. J. and Arriero, E. (2000). Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits. Proceedings of the Royal Society of London, B 267, 25072510.CrossRefGoogle Scholar
Mooring, M. S., Fitzpatrick, T. A., Fraser, I. C., Benjamin, J. E., Reisig, D. D. and Nishihira, T. T. (2003). Insect-defense behavior by desert bighorn sheep. The Southwest Naturalist 48, 635643.2.0.CO;2>CrossRefGoogle Scholar
Mordue (Luntz), A. J. (2003). Arthropod semiochemicals: mosquitoes, midges and sealice. Biochemical Society Transactions 31, 128–.133CrossRefGoogle Scholar
Mukabana, W. R., Takken, W., Coe, R. and Knols, B. G. J. (2002). Host-specific cues cause differential attractiveness of Kenyan men to the African malaria vector Anopheles gambiae. Malaria Journal 1, 17.CrossRefGoogle Scholar
Mullens, B. A., Owen, J. P., Heft, D. E. and Sobeck, R. V. (2005). Culicoides and other biting flies on the Palos Verdes Peninsula of Southern California, and their possible relationship to equine dermatitis. Journal of the American Mosquito Control Association 21, 9095.CrossRefGoogle ScholarPubMed
Mullens, B. A., Cardona, C. J., McClellan, L., Szijj, C. E. and Owen, J. P. (2006). Culicoides bottimeri as a vector of Haemoproteus lophortyx to quail in California, USA. Veterinary Parasitology 140, 3543.CrossRefGoogle ScholarPubMed
Mushi, E. Z., Chabo, R. G., Isa, J. F. W., Binta, M. G., Kapaata, R. W. and Bathuseng, T. (1999). Culicoides spp. (Diptera: Ceratopogonidae) associated with farmed ostriches (Struthio camelus) in Botswana. Veterinary Research Communications 23, 183186.CrossRefGoogle Scholar
Petit, C., Hossaert-McKey, M., Perret, P., Blondel, J. and Lambrechts, M. M. (2002). Blue tits use selected plants and olfaction to maintain an aromatic environment for nestlings. Ecology Letters 5, 585589.CrossRefGoogle Scholar
Podlipaev, S., Votỳpka, J., Jirků, M., Svobodová, M. and Lukeš, J. (2004). Herpetomonas ztiplikan n sp. (Kinetoplastida: trypanosomatidae): a parasite of the blood-sucking biting midge Culicoides kibunensis Tokunaga, 1937 (Diptera: Ceratopogonidae). Journal of Parasitology 90, 342347.CrossRefGoogle Scholar
Ratnayake, J., Dale, P. E., Sipe, N. G. and Daniels, P. (2006). Impact of biting midges on residential property values in Hervey Bay, Queensland, Australia. Journal of the American Mosquito Control Association 22, 131134.CrossRefGoogle ScholarPubMed
Russell, C. B. and Hunter, F. F. (2005). Attraction of Culex pipiens/restuans (Diptera: Culicidae) mosquitoes to bird uropygial gland odors at two elevations in the Niagara Region of Ontario. Journal of Medical Entomology 42, 301305.CrossRefGoogle ScholarPubMed
Sarto i Monteys, V. and Saiz-Ardanaz, M. (2003). Culicoides midges in Catalonia (Spain), with special reference to likely bluetongue virus vectors. Medical and Veterinay Entomology 17, 288293.CrossRefGoogle ScholarPubMed
Satta, G., Goffredo, M., Sanna, S., Vento, L., Cubeddu, G. P. and Mascherpa, E. (2004). Field disinfestation trials against Culicoides in north-west Sardinia. Veterinaria Italiana 40, 329335.Google ScholarPubMed
Shelley, A. J. and Coscarón, S. (2001). Simuliid Blackflies (Diptera: Simuliidae) and Ceratopogonid Midges (Diptera: Ceratopogonidae) as vectors of Mansonella ozzardi (Nematoda: Onchocercidae) in Northern Argentina. Memórias do Instituto Oswaldo Cruz 96, 451458.CrossRefGoogle Scholar
Sol, D., Jovani, R. and Torres, J. (2000). Geographical variation in blood parasites in feral pigeons: the role of vectors. Ecography 23, 307314.CrossRefGoogle Scholar
Sollai, G., Solari, P., Masala, C., Crnjar, R. and Liscia, A. (2007). Effects of avermectins on olfactory responses of Culicoides imicola (Diptera: Ceratopogonidae). Journal of Medical Entomology 44, 656659.CrossRefGoogle ScholarPubMed
Tomás, G., Merino, S., Martínez, J., Moreno, J. and Sanz, J. J. (2005). Stress protein levels and blood parasite infection in blue tits (Parus caeruleus): a medication field experiment. Annales Zoologici Fennici 42, 4556.Google Scholar
Tomás, G., Merino, S., Moreno, J., Morales, J. and Martínez-de la Puente, J. (2007 a). Impact of blood parasites on immunoglobulin level and parental effort: a medication field experiment on a wild passerine. Functional Ecology 21, 125133.CrossRefGoogle Scholar
Tomás, G., Merino, S., Moreno, J. and Morales, J. (2007 b). Consequences of nest reuse for parasite burden and female health and condition in blue tits, Cyanistes caeruleus. Animal Behaviour 73, 805814.CrossRefGoogle Scholar
Tomás, G., Merino, S., Martínez-de la Puente, J., Moreno, J., Morales, J. and Lobato, E. (2008 a). A simple trapping method to estimate abundances of blood-sucking flying insects in avian nests. Animal Behaviour 75, 723729.CrossRefGoogle Scholar
Tomás, G., Merino, S., Martínez-de la Puente, J., Moreno, J., Morales, J. and Lobato, E. (2008 b). Determinants of abundance and effects of blood-sucking flying insects in the nest of a hole-nesting bird. Oecologia 156, 305312.CrossRefGoogle ScholarPubMed
Torres-Estrada, J. L. and Rodríguez, M. H. (2003). Physic-chemical signals involved in host localization and induction of disease vector mosquito bites. Salud Pública de México 45, 497505.CrossRefGoogle ScholarPubMed
Valkiūnas, G. and Iezhova, T. A. (2004). Detrimental effects of Haemoproteus infections on the survival of biting midge Culicoides impunctatus (Diptera: Ceratopogonidae). Journal of Parasitology 90, 194196.CrossRefGoogle ScholarPubMed
Votỳpka, J., Oborník, M., Volf, P., Svobodová, M. and Lukeš, J. (2002). Trypanosoma avium of raptors (Falconiformes): phylogeny and identification of vectors. Parasitology 125, 253263.CrossRefGoogle ScholarPubMed
Wittmann, E. J., Mellor, P. S. and Baylis, M. (2001). Using climate data to map the potential distribution of Culicoides imicola (Diptera: Ceratopogonidae) in Europe. Revue scientifique et technique (International Office of Epizootics) 20, 731740.Google ScholarPubMed
Yu, C.-Y., Wang, J.-S. and Yeh, C.-C. (2000). Culicoides arakawae (Diptera: Ceratopogonidae) population succession in relation to leucocytozoonosis prevalence on a chicken farm in Taiwan. Veterinary Parasitology 93, 113120.CrossRefGoogle ScholarPubMed
Zimmerman, R. H. and Turner, E. C. Jr. (1983). Host-feeding patterns of Culicoides (Diptera: Ceratopogonidae) collected from livestock in Virginia, USA. Journal of Medical Entomology 20, 514519.CrossRefGoogle ScholarPubMed