Published online by Cambridge University Press: 01 December 1997
A single form of cholinesterase was detected in the parasitic nematode Parascaris equorum and purified from a low-salt Triton X-100 extract of whole animals by affinity chromatography on an edrophonium–Sepharose matrix. Based on gel-filtration chromatography, sedimentation analysis and SDS–PAGE, such a cholinesterase is an amphiphilic globular (G2) dimer (125–129 kDa, 6·1 S). It includes some hydrophobic domain other than phosphatidylinositol, which gives auto-aggregation, detergent interaction and also anchors the molecule to the cell membrane. The enzyme, probably functional in cholinergic neurotransmission, is an acetylcholinesterase showing a fairly low substrate specificity with thiocholine esters. Electrostatic interactions seem to play a major role in the catalytic activity. Studies with inhibitors gave complete inhibition with 1 mM eserine, low sensitivity for procainamide and for tetra(monoisopropyl)pyrophosphortetramide as well as higher inhibition with edrophonium chloride and 1,5-bis(4allyldimethylammoniumphenyl)-pentan-3-one dibromide. The enzyme also showed excess-substrate inhibition with acetylthiocholine. No cross-hybridization occurred between the gene(s) encoding acetylcholinesterase in P. equorum and ace-1 from the free-living nematode Caenorhabditis elegans. The expression of a single cholinesterase form in P. equorum, unusual in free-living nematodes, could be due to parasitic life adaptation with resulting reduction of locomotor activity.