Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T22:53:35.729Z Has data issue: false hasContentIssue false

Explaining premunition with Kin selection using Haemonchus contortus

Published online by Cambridge University Press:  05 April 2016

JENNIFER K. KETZIS*
Affiliation:
Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis, West Indies Formerly Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
ELIZABETH A. FOGARTY
Affiliation:
Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA Formerly Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
KARYNA MARTTINI
Affiliation:
Formerly Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
DWIGHT D. BOWMAN
Affiliation:
Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
*
*Corresponding author: Ross University School of Veterinary Medicine, PO Box 304, Basseterre, St. Kitts and Nevis, West Indies. Tel: +1-732-898-0055. Fax: +1-869-465-1203. E-mail: [email protected]

Summary

Premunition is the state in a disease where an existing infection protects the host from reinfection with the same species. The cause of premunition is not clearly understood. In this study, we hypothesized that kin-selection might be a contributing factor in premunition. To test this theory, sheep were infected either once with a linguiform or smooth vulval morphotype of Haemonchos contortus, twice with the same morphotype or twice with different morphotypes. All infections resulted in a similar number of adult parasites. However, there were differences in the morphotypes recovered providing potential evidence of kin selection. Negative interference competition might also contribute to the reduction of the incoming population. Allelopathic or physical interactions between the parasites may be the mechanism behind the observed phenomena.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abele, L. B. and Gilchrist, S. (1977). Homosexual rape and sexual selection in acanthocephalan worms. Science 197, 8183.CrossRefGoogle ScholarPubMed
Adams, D. B. (1986). Developmental arrest of Haemonchus contortus in sheep treated with a corticosteroid. International Journal for Parasitology 16, 659664.Google Scholar
Araujo, F., Slifer, T. and Kim, S. (1997). Chronic infection with Toxoplasma gondii does not prevent acute disease or colonization of the brain with tissue cysts following reinfection with different strains of the parasite. The Journal of Parasitology 83, 521522.Google Scholar
Cameron, T. W. M. (1934). Internal Parasites of Domestic Animals. A Manual for Veterinary Surgeons. A. & C. Black, Ltd, London, UK. p. 218.Google Scholar
Castelain, C., Chastellière, M. G., Jullian, J. P., Morvan, G. and Lemaire, J. M. (1997). La prémunition contre l'enroulement chlorotique de l'abricotier. Bilan de dix années d'observation sur huit vergers. (Control of apricot chlorotic leaf roll.). Phytoma la Défense des Végétaux 493, 3944.Google Scholar
Damian, R. T., Greene, N. D. and Fitzgerald, K. (1974). Schistosomiasis mansoni in baboons. II. Acquisition of immunity to challenge infection after repeated small exposures to cercariae of Schistosoma mansoni . The American Journal of Tropical Medicine and Hygiene 23, 7880.Google Scholar
Dunsmore, J. D. (1961). Effect of whole body irradiation and cortisone on the development of Ostertagia spp. in sheep. Nature 192, 139140.Google Scholar
Hamilton, W. D. (1963). The evolution of altruistic behavior. The American Naturalist 97, 354356.Google Scholar
Hewitson, J. P., Grainger, J. R. and Maizels, R. M. (2009). Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Molecular and Biochemical Parasitology 167, 111.Google Scholar
Kennedy, T. J. and Todd, A. C. (1975). Age group interaction of Haemonchus contortus in premunized lambs. American Journal of Veterinary Research 36, 11951198.Google Scholar
LeJambre, L. F. (1977). Genetics of vulvar morph types in Haemonchus contortus: Haemonchus contortus cayugensis from the finger lakes region of New York. International Journal for Parasitology 7, 914.CrossRefGoogle Scholar
LeJambre, L. F. and Whitlock, J. H. (1968). Seasonal fluctuation in linguiform morphs of Haemonchus contortus cayugensis . The Journal of Parasitology 54, 872–830.Google Scholar
Maizels, R. M. (2013). Toxocara canis: molecular basis of immune recognition and evasion. Veterinary Parasitology 193, 365374.CrossRefGoogle ScholarPubMed
Meckert, P. C., Chambό, J. G. and Laguens, R. P. (1988). Differences in resistance to reinfection with low and high inocula of Trypanosoma cruzi in chagasic mice treated with nifurtimox and relation to immune response. Antimicrobial Agents and Chemotherapy 32, 241245.Google Scholar
Michel, J. F. (1967). Morphological changes in a parasitic nematode due to acquired resistance of the host. Nature 215, 520521.Google Scholar
Michel, C. and Faivre, B. (1991). Carrier state in furunculosis: secondary infection of trout with different Aeromonas salmonicida strains results in advantage for the primarily harboured one. Journal of Fish Diseases 14, 571576.Google Scholar
Mulvenna, J., Hamilton, B., Nagaraj, S. H., Smyth, D., Loukas, A. and Gorman, J. J. (2009). Proteomics analysis of the excretory/secretory component of the blood-feeding stage of the hookworm, Ancylostoma caninum . Molecular and Cellular Proteomics 8, 109121.Google Scholar
Nadim, A. (1984). Immunity to cutaneous leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 848.Google Scholar
Read, C. P. (1951). The “crowding effect” in tapeworm infections. The Journal of Parasitology 37, 174178.Google Scholar
Regragui, A., Lahlou, H. and Zaid, H. (1989). La prémunition de la tomate contre la verticilliose cause par Verticillium albo-atrum, forme a microsclérotes. Conséquences physiologiques du phénomène. Cross protection in tomato against Verticillium albo-atrum, microsclerotical form. Physiological consequences of the phenomenon. Cryptogamie Mycologie 10, 243256. (French)Google Scholar
Roberts, F. H. S., Turner, H. N. and McKevett, M. (1954). On the specific distinctness of the ovine and bovine “strains” of Haemonchus contortus (Rudolphi) Cobb (Nematoda: Trichostrongylidae. Australian Journal of Zoology 2, 275295.Google Scholar
Sergent, E., Parrot, L. and Donatien, A. (1924). Une question de terminologie: Immuniser et prémunir. Bulletin de la Société de Pathologie Exotique 17, 37–18.Google Scholar
Smith, T., Felger, I., Tanner, M. and Beck, H. P. (1999). Premunition in Plasmodium falciparum infection: insights from the epidemiology of multiple infections. Transactions of the Royal Society of Tropical Medicine and Hygiene 93(Suppl. 1), 5964.Google Scholar
Solangi, M. A. and Overstreet, R. M. (1980). Biology and pathogenesis of the coccidium Eimeria funduli infecting killifishes. The Journal of Parasitology 66, 513526.Google Scholar
Taquet, B., Ravisé, A., Renard, J. L. and Kunesch, G. (1985). Modulation des réactions de défense du palmier à huile contre le Fusarium oxysporum f. sp. elaeidis (Schlecht) Toovey: applications: prémunition et stimulation chimique. (Modulation of defense reactions of oil palm to Fusarium oxysporum f.sp. elaeidis (Schlecht) Toovey: applications: cross protection and chemical stimulation). Phytopathologische Zeitschrift 112, 298314.CrossRefGoogle Scholar
Whitlock, J. H. and Georgi, J. R. (1976). Biological controls in mixed trichostrongyle infections. Parasitology 72, 207224.Google Scholar