Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-08T01:26:21.989Z Has data issue: false hasContentIssue false

Experimental infection by Haemonchus contortus in lambs: influence of disease on purine levels in serum

Published online by Cambridge University Press:  17 February 2014

LUCAS T. GRESSLER
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Brazil
ALEKSANDRO S. DA SILVA*
Affiliation:
Department of Animal Science, Universidade do Estado de Santa Catarina, Brazil
CAMILA B. OLIVEIRA
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Brazil
ANDRESSA S. SCHAFER
Affiliation:
Department of Large Animal, UFSM, Brazil
ADELINA R. AIRES
Affiliation:
Department of Large Animal, UFSM, Brazil
JOSÉ F. X. ROCHA
Affiliation:
Department of Large Animal, UFSM, Brazil
ALEXANDRE A. TONIN
Affiliation:
Department of Small Animal, UFSM, Brazil
GABRIEL H. SCHIRMBECK
Affiliation:
Department of Biochemistry and Department of Morphological Sciences, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
EMERSON A. CASALI
Affiliation:
Department of Biochemistry and Department of Morphological Sciences, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
SONIA T. A. LOPES
Affiliation:
Department of Small Animal, UFSM, Brazil
MARTA L. R. LEAL
Affiliation:
Department of Large Animal, UFSM, Brazil
SILVIA G. MONTEIRO
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Brazil
*
* Corresponding author: Department of Animal Science, Universidade do Estado de Santa Catarina, Brazil. E-mail: [email protected]

Summary

The aim of this study was to evaluate the purine levels of lambs experimentally infected with Haemonchus contortus. A total of 12 healthy lambs were divided into two groups, composed of 6 animals each: Group A represented the healthy animals (uninfected), while in Group B the animals were infected with 15 000 larvae of H. contortus. Blood was drawn on days 15, 45 and 75 post-infection (PI) in order to perform the purine analysis (ATP, ADP, AMP, adenosine, inosine, hypoxanthine, xanthine and uric acid) by high pressure liquid chromatography (HPLC) in serum. On day 15 PI a significant (P<0·05) increase in the levels of ATP and inosine was observed in the infected animals, unlike the levels of ADP, adenosine, xanthine and uric acid which were reduced. On day 45 PI a significant (P<0·05) increase in the ATP and xanthine levels in infected animals was observed, contrasting with reduced levels of ADP and uric acid. Finally, on day 75 PI an increase occurred in the levels of ATP, adenosine and hypoxanthine in infected lambs, concomitant with a reduction in the levels of ADP and uric acid (P<0·05). These changes in purine levels may influence the inflammatory process and the pathological events.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atkinson, B., Dwyer, K., Enjyoji, K. and Robson, R. (2006). Ectonucleotidases of the CD39/NTPDase family and thrombus formation: potential as therapeutic targets. Blood Cells, Molecules and Diseases 36, 217222.Google Scholar
Balic, A., Bowles, V. M. and Meeusen, E. N. (2000). Cellular profiles in the abomasal mucosa and lymph node during primary infection with Haemonchus contortus in sheep. Veterinary Immunology and Immunopathology 75, 109120.Google Scholar
Bours, M. J., Swennen, E. L., Di Virgilio, F., Cronstein, B. N. and Dagnelie, P. C. (2006). Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacology and Therapy 112, 358404.Google Scholar
Burnstock, G. and Knight, G. E. (2004). Cellular distribution and functions of P2 receptor subtypes in different systems. International Review of Cytology 240, 31304.Google Scholar
Cavalcante, A. C. R., Vieira, L. S., Chagas, A. C. S. and Molento, M. B. (2009). Doenças parasitárias de caprinos e ovinos epidemiologia e controle. Embrapa Informação Tecnológica, Brasilia, p. 603.Google Scholar
Chen, X. B. and Gomes, M. J. (1992). Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives- an Overview of Technical Details. Occasional publication, International Feed Research Unit. Rowett Research Institute, Aberdeen, UK. Google Scholar
Crab, A., Noppe, W., Pelicaen, C., Hoorelbeke, K. V. and Deckmyn, H. (2002). The parasitic hematophagous worm Haemonchus contortus inhibits human platelet aggregation and adhesion: partial purification of a platelet inhibitor. Thrombosis and Haemostasis 87, 899904.Google Scholar
Cronstein, B. N. (1994). Adenosine, an endogenous anti-inflammatory agent. Journal of Applied Physiology 76, 513.CrossRefGoogle ScholarPubMed
Da Silva, A. S., Fausto, G. C., Grando, T. H., Cadore, C. A., Pimentel, V. C., Jaques, J. A., Schetinger, M. R. C., Monteiro, S. G. and Leal, M. L. R. (2013 a). E-ADA activity in serum of lambs experimentally infected with Haemonchus contortus . Journal of Parasitology 99, 703705.Google Scholar
Da Silva, A. S., Schafer, A., Aires, A. R., Tonin, A. A., Pimentel, V. C., Oliveira, C. B., Zanini, D., Schetinger, M. R. C., Lopes, S. T. A. and Leal, M. L. R. (2013 b). E-ADA activity in erythrocytes of lambs experimentally infected with Haemonchus contortus and its possible functional correlations with anemia. Research in Veterinary Science 95, 10261030. doi: 10.1016/j.rvsc.2013.07.008.Google Scholar
Depraetere, H., Kerekes, A. and Deckmyn, H. (1999). The collagen-binding leech products rLAPP and calin prevent both von Willebrand factor and alpha2-beta1(GPIa/IIa)-I-domain binding to collagen in a different manner. Thrombosis and Haemostasis 82, 11601163.Google Scholar
Feldman, B. F., Zinkl, J. G. and Jain, N. C. (2000). Schalm's Veterinary Hematology, 5th Edn. Lippincott Williams & Wilkins, Philadelphia, PA, USA.Google Scholar
Francischetti, I. M., Ribeiro, J. M., Champagne, D. and Andersen, J. (2000). Purification, cloning, expression, and mechanism of action of a novel platelet aggregation inhibitor from the salivary gland of the blood-sucking bug, Rhodnius prolixus . Journal of Biological Chemistry 275, 1263912650.Google Scholar
Gamble, H. R. and Mansfield, L. S. (1996). Characterization of excretory-secretory products from larval stages of Haemonchus contortus cultured in vitro . Veterinary Parasitology 62, 291305.CrossRefGoogle ScholarPubMed
Gessi, S., Merighi, S., Varani, K., Cattabriga, E., Benini, A., Mirandola, P., Leung, E., Mac Lennan, S., Feo, C., Baraldi, S. and Borea, P. A. (2007). Adenosine receptors in colon carcinoma tissues and colon tumoral cell lines: focus on the A3 adenosine subtype. Journal of Cellular Physiology 211, 826836.CrossRefGoogle ScholarPubMed
González, F. H. D. and Sílva, S. C. (2006). Introdução a bioquímica clínica veterinária, 2nd Edn. Editora UFRGS, Porto Alegre, Brazil.Google Scholar
Gordon, H. M. and Whitlock, H. V. (1939). A new technique for counting nematode eggs in sheep faeces. Journal of the Council for Scientific Industrial Research 12, 5052.Google Scholar
Gounaris, K. and Selkirk, M. E. (2005). Parasite nucleotide-metabolizing enzymes and host purinergic signalling. Trends in Parasitology 21, 1721.CrossRefGoogle ScholarPubMed
Haskó, G. and Cronstein, B. N. (2004). Adenosine: an endogenous regulator of innate immunity. Trends in Immunology 25, 3339.Google Scholar
Haskó, G., Sitkovsky, M. V. and Szabó, C. (2004). Immunomodulatory and neuroprotective effects of inosine. Trends in Pharmacological Sciences 25, 152157.Google Scholar
Jin, X., Shepherd, R. K., Duling, B. R. and Linden, J. (1997). Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. American Society for Clinical Investigation 100, 28492857.Google Scholar
Knight, P. A., Wright, S. H., Lawrence, C. E., Paterson, Y. Y. W. and Miller, H. R. P. (2000). Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. Journal of Experimental Medicine 192, 18491856.Google Scholar
Langston, H. P., Ke, Y., Gewirtz, A. T., Dombrowski, K. E. and Kapp, J. A. (2003). Secretion of IL-2 and IFN-gamma, but not IL-4, by antigen-specific T cells requires extracellular ATP. Journal of Immunology 170, 29622970.CrossRefGoogle Scholar
La Sala, A., Ferrari, D., Di Virgilio, F., Idzko, M., Norgauer, J. and Girolomoni, G. (2003). Alerting and tuning the immune response by extracellular nucleotides. Journal of Leukocyte Biology 73, 339343.Google Scholar
McClure, S. J., Davey, R. L., Emery, D. L., Colditz, I. G. and Lloyd, J. B. (1996). In vivo depletion of T-cells and cytokines during primary exposure of sheep to parasites. Veterinary Immunology and Immunopathology 54, 8390.CrossRefGoogle ScholarPubMed
Meeusen, E. N. T. (1999). Immunology of helminth infections, with special reference to immunopathology. Veterinary Parasitology 84, 254273.CrossRefGoogle ScholarPubMed
Miller, J. E. and Horohov, D. W. (2006). Immunological aspects of nematode parasite control in sheep. Journal of Animal Science 84, E124E132.Google Scholar
Monteiro, S. G. (2010). Parasitologia na medicina veterinária. Roca, São Paulo, Brazil.Google Scholar
Newby, A. C. (1984). Adenosine and the concept of retaliatory metabolites. Trends in Biochemical Sciences 9, 4244.Google Scholar
Ralevic, V. and Burnstock, G. (1998). Receptors for purines and pyrimidines. Pharmacological Reviews 50, 413492.Google Scholar
Roberts, F. H. S. and O'Sullivan, J. P. (1950). Methods for egg counts and larval cultures for strongyles infesting the gastrointestinal tract of cattle. Australian Journal of Agricultural Research 1, 99102.CrossRefGoogle Scholar
Sala-Newby, G. B., Skladanowski, A. C. and Newby, A. C. (1999). The mechanism of adenosine formation in cells. Cloning of cytosolic 5′-nucleotidase-I. Journal of Biological Chemistry 274, 1778917793.Google Scholar
Sawynok, J. and Liu, X. J. (2003). Adenosine in the spinal cord and periphery: release and regulation of pain. Progress in Neurobiology 69, 313340.CrossRefGoogle ScholarPubMed
Seymour, J. L., Henzel, W. J., Nevins, B., Stults, J. T. and Lazarus, R. A. (1990). Decorsin. A potent glycoprotein IIb-IIIa antagonist and platelet aggregation inhibitor from the leech Macrobdella decora . Journal of Biological Chemistry 265, 1014310147.CrossRefGoogle ScholarPubMed
Shahbazian, H., Mombini, H., Moghaddam, A. Z., Jasemi, M., Hosseini, M. A. and Vaziri, P. (2006). Changes in plamsa concentrations of hypoxanthine and xanthine in renal vein as an index of delayed kidney allograft function. Urology Journal 3, 225229.Google Scholar
Stanssens, P., Bergum, P. W., Gansemans, Y., Jespers, L., Laroche, Y., Huang, S., Maki, S., Messens, J., Lauwereys, M., Cappello, M., Hotez, P. J., Lasters, I. and Vlasuk, G. P. (1996). Anticoagulant repertoire of the hookworm Ancylostoma caninum . Proceedings of the National Academy of Sciences USA 93, 21492154.Google Scholar
Ueno, H. and Gonçalves, P. C. (1998). Manual for Diagnosis of Helminthiasis in Ruminants. Press Color, Salvador, Brazil.Google Scholar
Veloso, C. F. M., Louvandini, H., Kimura, E. A., Azevedo, C. R., Enoki, D. R., França, L. D., McManus, C. M., Dell'porto, A. and Santana, A. P. (2004). Efeitos da suplementação proteica no controle da verminose e nas características de carcaça de ovinos Santa Inês. Ciência Animal Brasileira 5, 131139.Google Scholar
Voelter, W., Zech, K., Arnold, P. and Ludwig, G. (1980). Determination of selected pyrimidines, purines and their metabolites in serum and urine by reversed-phase ion pair chromatography. Journal of Chromatography 199, 345354.Google Scholar
Yegutkin, G. (2008). Nucleotide and nucleoside converting ectoenzymes: important modulators of purinergic signaling cascade. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research 1783, 673694.CrossRefGoogle Scholar
Waller, P. J., Dash, K. M., Barger, I. A., Le Jambre, L. F. and Plant, J. (1995). Anthelmintic resistance in nematode parasites of sheep: learning from the Australian experience. Veterinary Record 136, 411413.Google Scholar