Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T18:44:09.488Z Has data issue: false hasContentIssue false

Experimental evidence for a new transmission route in a parasitic mite and its mucus-dependent orientation towards the host snail

Published online by Cambridge University Press:  12 November 2008

H. U. SCHÜPBACH*
Affiliation:
Department of Environmental Sciences, Section of Conservation Biology, University of Basel, St Johanns-Vorstadt 10, CH-4056 Basel, Switzerland
B. BAUR
Affiliation:
Department of Environmental Sciences, Section of Conservation Biology, University of Basel, St Johanns-Vorstadt 10, CH-4056 Basel, Switzerland
*
*Corresponding author: Tel: +41 61 267 08 44. Fax: +41 61 267 08 32. E-mail: [email protected]

Summary

The route of transmission and host finding behaviour are fundamental components of a parasite's fitness. Riccardoella limacum, a haematophagous mite, lives in the mantle cavity of helicid land snails. To date it has been assumed that this parasitic mite is transmitted during courtship and mating of the host. Here we present experimental evidence for a new transmission route in the host snail Arianta arbustorum. Parasite-free snails were kept on soil on which previously infected host snails had been maintained for 6 weeks. R. limacum was successfully transmitted via soil without physical contact among hosts in 10 out of 22 (45·5%) cases. In a series of experiments we also examined the off-host locomotion of R. limacum on snail mucus and control substrates using an automated camera system. Parasitic mites showed a preference to move on fresh mucus. Our results support the hypothesis that R. limacum uses mucus trails to locate new hosts. These findings should be considered in commercial snail farming and when examining the epidemiology of wild populations.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, R. A. (1970 a). Studies on the life history of Riccardoella limacum (Schrank) (Acari, Trombidiformes). Journal of Natural History 4, 511519.CrossRefGoogle Scholar
Baker, R. A. (1970 b). The food of Riccardoella limacum (Schrank) (Acari, Trombidiformes) and its relationship with pulmonate molluscs. Journal of Natural History 4, 521530.CrossRefGoogle Scholar
Barker, G. M. (ed.) (2001). The Biology of Terrestrial Molluscs. CABI Publishing, Wallingsford, Oxon., UK.CrossRefGoogle Scholar
Batschelet, E. (1981). Circular Statistics in Biology, Academic Press, London.Google Scholar
Baur, A. and Baur, B. (1993). Daily movement patterns and dispersal in the land snail Arianta arbustorum. Malacologia 35, 8998.Google Scholar
Baur, A. and Baur, B. (2005). Interpopulation variation in the prevalence and intensity of parasitic mite infection in the land snail Arianta arbustorum. Invertebrate Biology 124, 194201. doi: 10.1111/j.1744-7410.2005.00019.x.CrossRefGoogle Scholar
Baur, B. (1986). Patterns of dispersion, density and dispersal in alpine populations of the land snail Arianta arbustorum (L.) (Helicidae). Holarctic Ecology 9, 117125.Google Scholar
Baur, B. (1992). Random mating by size in the simultaneously hermaphroditic land snail Arianta arbustorum – experiments and an explanation. Animal Behaviour 43, 511518.CrossRefGoogle Scholar
Baur, B. and Raboud, C. (1988). Life-history of the land snail Arianta arbustorum along an altitudinal gradient. Journal of Animal Ecology 57, 7187.CrossRefGoogle Scholar
Boots, M. and Mealor, M. (2007). Local interactions select for lower pathogen infectivity. Science 315, 12841286. doi: 10.1126/science.1137126.CrossRefGoogle ScholarPubMed
Bull, J. J. (1994). Virulence. Evolution 48, 14231437.Google ScholarPubMed
Combes, C. (2001). Parasitism: The Ecology and Evolution of Intimate Interactions. The University of Chicago Press, Chicago, USA.Google Scholar
Crossan, J., Paterson, S. and Fenton, A. (2007). Host availability and the evolution of parasite life-history strategies. Evolution 61, 675684. doi: 10.1111/j.1558-5646.2007.00057.x.CrossRefGoogle ScholarPubMed
Ebert, D. and Herre, E. A. (1996). The evolution of parasitic diseases. Parasitology Today 12, 96101.CrossRefGoogle ScholarPubMed
Fain, A. and Van Goethem, J. L. (1986). Les acariens du genre Riccardoella Berlese, 1923 parasites du poumon de mollusques gastéropodes pulmonés terrestres. Acarologia 27, 125140.Google Scholar
Fenton, A., Fairbairn, J. P., Norman, R. and Hudson, P. J. (2002). Parasite transmission: reconciling theory and reality. Journal of Animal Ecology 71, 893905.CrossRefGoogle Scholar
Fenton, A. and Rands, S. A. (2004). Optimal parasite infection strategies: a state-dependent approach. International Journal for Parasitology 34, 813821. doi: 10.1016/j.ijpara.2004.02.003.CrossRefGoogle ScholarPubMed
Frank, S. A. and Schmid-Hempel, P. (2008). Mechanisms of pathogenesis and the evolution of parasite virulence. Journal of Evolutionary Biology 21, 396404. doi: 10.1111/j.1420-9101.2007.01480.x.CrossRefGoogle ScholarPubMed
Galvani, A. P. (2003). Epidemiology meets evolutionary ecology. Trends in Ecology & Evolution 18, 132139.CrossRefGoogle Scholar
Ganusov, V. V. and Antia, R. (2003). Trade-offs and the evolution of virulence of microparasites: do details matter? Theoretical Population Biology 64, 211220. doi: 10.1016/S0040-5809(03)00063-7.CrossRefGoogle ScholarPubMed
Graham, F. J. (1994). The biology and control of Riccardoella limacum (Schrank), a mite pest of farmed snails. PhD thesis. University of Wales, UK.Google Scholar
Graham, F. J., Ford, J. B. and Runham, N. W. (1993). Comparison of two species of mites of the same genus, Riccardoella associated with Molluscs. Acarologia 34, 143148.Google Scholar
Graham, F. J., Runham, N. W. and Ford, J. B. (1996). Long-term effects of Riccardoella limacum living in the lung of Helix aspersa. British Crop Protection Council Symposium Proceedings 66, 359364.Google Scholar
Hertel, J., Holweg, A., Haberl, B., Kalbe, M. and Haas, W. (2006). Snail odour-clouds: spreading and contribution to the transmission success of Trichobilharzia ocellata (Trematoda, Digenea) miracidia. Oecologia 147, 173180. doi: 10.1007/s00442-005-0239-5.CrossRefGoogle Scholar
Kerney, M. and Cameron, R. (1979). A Field Guide to the Land Snails of Britain and North-west Europe, Collins, London, UK.Google Scholar
Krasnov, B. R., Khokhlova, I. S., Oguzoglu, I. and Burdelova, N. V. (2002). Host discrimination by two desert fleas using an odour cue. Animal Behaviour 64, 3340. doi: 10.1006/anbe.2002.3030.CrossRefGoogle Scholar
Poulin, R. (2007). Evolutionary Ecology of Parasites, 2nd Edn. Princeton University Press, Princeton, USA.CrossRefGoogle Scholar
R Development Core Team (2008). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. URL http://www.R-project.org, Vienna, Austria.Google Scholar
Rea, J. G. and Irwin, S. W. B. (1994). The ecology of host-finding behaviour and parasite transmission – past and future perspectives. Parasitology 109(Suppl.), S31S39.CrossRefGoogle ScholarPubMed
Robb, T. and Forbes, M. R. (2005). Success of ectoparasites: how important is timing of host contact? Biology Letters 1, 118120. doi: 10.1098/rsbl.2004.0271.CrossRefGoogle ScholarPubMed
Schüpbach, H. U. and Baur, B. (2008). Parasitic mites influence fitness components of their host, the land snail Arianta arbustorum. Invertebrate Biology 127, 350356 doi:10.1111/j.1744-7410.2008.00138.x.CrossRefGoogle Scholar
Shaheen, N., Patel, K., Patel, P., Moore, M. and Harrington, M. A. (2005). A predatory snail distinguishes between conspecific and heterospecific snails and trails based on chemical cues in slime. Animal Behaviour 70, 10671077. doi: 10.1016/j.anbehav.2005.02.017CrossRefGoogle Scholar
Turk, F. A. and Phillips, S. M. (1946). A monograph of the slug mite – Riccardoella limacum (Schrank). Proceedings of the Zoological Society of London 115, 448472.CrossRefGoogle Scholar