Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T06:52:18.197Z Has data issue: false hasContentIssue false

Evolution of interspecific variation in size of attachment structures in the large tapeworm genus Acanthobothrium (Tetraphyllidea: Onchobothriidae)

Published online by Cambridge University Press:  06 May 2010

H. S. RANDHAWA*
Affiliation:
Department of Zoology, University of Otago, P.O. 56, Dunedin, New Zealand, 9054
R. POULIN
Affiliation:
Department of Zoology, University of Otago, P.O. 56, Dunedin, New Zealand, 9054
*
*Corresponding author: Tel: +64 3 479 4039. Fax: +64 3 479 7584. E-mail: [email protected]

Summary

Parasites have evolved a myriad of attachment structures closely adapted to their hosts and sites of attachment. Here, using members of the genus Acanthobothrium van Beneden, 1850 (Cestoda: Tetraphyllidea: Onchobothriidae), we (i) examined the influence of host body size and phylogeny, in addition to morphological features of these tapeworms, on the size of 3 structures used in attachment (bothridia, accessory suckers and hooks) by means of general linear models and phylogenetic-independent contrasts methods, and (ii) quantified the scaling exponents of relationships between size of attachment structures and tapeworm body size. Our results indicate that there exists a positive relationship, albeit not directly proportional, between size of attachment structures and Acanthobothrium spp. body size, and hook size and size of bothridia and accessory suckers. These results suggest that the resource investment in whole-body growth is greater than that in attachment structures, and that a greater investment in development of bothridia and accessory suckers is required to maintain an equivalent functional efficacy to hooks. In addition, host body size also influences, though less markedly, the size of attachment structures in Acanthobothrium spp. independently of parasite size itself. Acanthobothrium species have evolved a generalized mode of attachment that is successful in maintaining their position on various intestinal mucosal topographies across a variety of hosts exploiting different food resources.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, D. R. (2008). Model Based Inference in the Life Sciences: A Primer on Evidence. Springer, New York, NY, USA.CrossRefGoogle Scholar
Bilqees, F. M. and Freeman, R. S. (1969). Histogenesis of the rostellum of Taenia crassiceps (Zeder, 1800) (Cestoda), with special reference to hook development. Canadian Journal of Zoology 47, 251261. doi:10.1139/z69-052CrossRefGoogle ScholarPubMed
Brooks, D. R. (1980). Allopatric speciation and non-interactive parasite community structure. Systematic Zoology 29, 192203. Available from www.jstor.org/stable/2412649CrossRefGoogle Scholar
Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York, NY, USA.Google Scholar
Caira, J. N. and Jensen, K. (2001). An investigation of the co-evolutionary relationships between onchobothriid tapeworms and their elasmobranch hosts. International Journal for Parasitology 31, 960975. doi:10.1016/S0020-7519(01)00206-5.CrossRefGoogle ScholarPubMed
Caira, J. N., Jensen, K. and Healy, C. J. (1999). On the phylogenetic relationships among tetraphyllidean, lecanicephalidean and diphyllidean tapeworm genera. Systematic Parasitology 42, 77–151. doi:10.1023/A:1006192603349.CrossRefGoogle ScholarPubMed
Caira, J. N., Jensen, K. and Healy, C. J. (2001). Interrelationships among tetraphyllidean and lecanicephalidean cestodes. In Interrelationships of the Platyhelminthes (ed. Littlewood, T. and Bray, R. A.), pp. 135158. Taylor and Francis, London, UK.Google Scholar
Caira, J. N. and Ruhnke, T. R. (1991). A comparison of scolex morphology between the plerocercoid and the adult of Calliobothrium verticillatum (Tetraphyllidea: Onchobothriidae). Canadian Journal of Zoology 69, 14841488. doi:10.1139/z91-207.CrossRefGoogle Scholar
Campbell, R. A. and Beveridge, I. (2002). The genus Acanthobothrium (Cestoda: Tetraphyllidea: Onchobothriidae) parasitic in Australian elasmobranch fishes. Invertebrate Systematics 16, 237344. doi:10.1071/IT01004.CrossRefGoogle Scholar
Carvajal, J. G. and Dailey, M. D. (1975). Three new species of Echeneibothrium (Cestoda: Tetraphyllidea) from the skate, Raja chilensis Guichenot, 1848, with comments on mode of attachment and host specificity. Journal of Parasitology 61, 8994.CrossRefGoogle ScholarPubMed
Chambers, C. B., Cribb, T. H. and Jones, M. K. (2000). Tetraphyllidean metacestodes of teleosts of the Great Barrier Reef, and the use of in vitro cultivation to identify them. Folia Parasitologica 47, 285292.CrossRefGoogle Scholar
Compagno, L. J. V., Dando, M. and Fowler, S. (2005). Sharks of the World. Princeton University Press, Princeton, NJ, USA.Google Scholar
Crompton, D. W. T. (1973). The sites occupied by some parasitic helminths in the alimentary tract of vertebrates. Biological Reviews 48, 2783.CrossRefGoogle ScholarPubMed
Crusz, H. (1947). The early development of the rostellum of Cysticercus fasciolaris Rud., and the chemical nature of its hooks. Journal of Parasitology 33, 8798.CrossRefGoogle ScholarPubMed
Euzet, L. (1959). Recherches sur les cestodes Tétraphyllides de Sélaciens des côtes de France, D.Sc. thesis. Faculté des Sciences, Université de Montpellier, France.Google Scholar
Euzet, L. (1994). Order Tetraphyllidea. In Keys to the Cestode Parasites in Vertebrates (ed. Khalil, L. F., Jones, A. and Bray, R. A.) pp. 149194. CAB International, Wallingford, UK.Google Scholar
Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist 125, 115.CrossRefGoogle Scholar
Friggens, M. M. and Brown, J. H. (2005). Niche partitioning in the cestode communities of two elasmobranchs. Oikos 108, 7684. doi:10.1111/j.0030-1299.2005.13275.x.CrossRefGoogle Scholar
Froese, R. and Pauly, D. (2008). Fishbase version (04/2008). [online]. Available from www.fishbase.org.Google Scholar
Fyler, C. A. and Caira, J. N. (2006). Five new species of Acanthobothrium (Tetraphyllidea: Onchobothriidae) from the freshwater stingray Himantura chaophraya (Batoidea: Dasyatidae) in Malaysian Borneo. Journal of Parasitology 92, 105125. doi:10.1645/GE-3522.1.CrossRefGoogle Scholar
Fyler, C. A., Caira, J. N. and Jensen, K. (2009). Five new species of Acanthobothrium (Cestoda: Tetraphyllidea) from an unusual species of Himantura (Rajiformes: Dasyatidae) from northern Australia. Folia Parasitologica 56, 107128.CrossRefGoogle ScholarPubMed
Garland, T., Harvey, P. H. and Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology 41, 1832.CrossRefGoogle Scholar
Grafen, A. (1989). The phylogenetic regression. Philosophical Transactions of the Royal Society, Series B 326, 119157. doi:10.1098/rstb.1989.0106.Google ScholarPubMed
Hamilton, K. A. and Byram, J. E. (1974). Tapeworm development: The effects of urea on a larval tetraphyllidean. Journal of Parasitology 60, 2028.CrossRefGoogle ScholarPubMed
Hayunga, E. G. (1991). Morphological adaptations of intestinal helminths. Journal of Parasitology 77, 865873.CrossRefGoogle ScholarPubMed
Healy, C. J., Caira, J. N., Jensen, K., Webster, B. L. and Littlewood, D. T. J. (2009). Proposal for a new tapeworm order, Rhinebothriidea. International Journal for Parasitology 39, 497511. doi:10.1016/j.ijpara.2008.09.002.CrossRefGoogle ScholarPubMed
Holland, N. D., Campbell, T. G., Garey, J. R., Holland, L. Z. and Wilson, N. G. (2009). The Florida amphioxus (Cephalochordata) hosts larvae of the tapeworm Acanthobothrium brevissime: natural history, anatomy and taxonomic identification of the parasite. Acta Zoologica 90, 7586. doi:10.1111/j.1463-6395.2008.0343.x.CrossRefGoogle Scholar
Keymer, A. E., Gregory, R. D., Harvey, P. H., Read, A. F. and Skorping, A. (1991). Parasite-host ecology: case studies in population dynamics, life-history evolution and community structure. Acta Oecologica 12, 105118.Google Scholar
Maddison, W. P. (1990). A method for testing the correlated evolution of two binary characters: are gains or losses concentrated on certain branches of a phylogenetic tree? Evolution 44, 539557.CrossRefGoogle ScholarPubMed
Maddison, W. P. and Maddison, D. R. (2007). Mesquite: a Modular System for Evolutionary Analysis. Version 2.5. Available from http://mesquiteproject.org.Google Scholar
Marques, F., Brooks, D. R. and Barriga, R. (1997). Six new species of Acanthobothrium (Eucestoda: Tetraphyllidea) in stingrays (Chondrichthyes: Rajiformes: Myliobatoidei) from Ecuador. Journal of Parasitology 83, 475484.CrossRefGoogle Scholar
McKenzie, V. J. and Caira, J. N. (1998). Three new genera and species of tapeworms from the longnose sawshark, Pristiophorus cirratus, with comments on their modes of attachment to the spiral intestine. Journal of Parasitology 84, 409421.CrossRefGoogle Scholar
McVicar, A. H. (1979). The distribution of cestodes within the spiral intestine of Raja naevus Müller and Henle. International Journal for Parasitology 9, 165176. doi:10.1016/0020-7519(79)90024-9.CrossRefGoogle Scholar
Midford, P. E., Garland, T. Jr. and Maddison, W. P. (2005). PDAP Package of Mesquite. Version 1.07.Google Scholar
Morand, S. (1996). Life-history traits in parasitic nematodes: a comparative approach for the search of invariants. Functional Ecology 10, 210218.CrossRefGoogle Scholar
Morand, S., Hafner, M. S., Page, R. D. M. and Reed, D. L. (2000). Comparative body size relationships in pocket gophers and their chewing lice. Biological Journal of the Linnean Society 70, 239249. doi:10.1111/j.1095-8312.2000.tb00209.x.CrossRefGoogle Scholar
Morand, S. and Poulin, R. (2003). Phylogenies, the comparative method and parasite evolutionary ecology. Advances in Parasitology 54, 281302. doi:10.1016/S0065-308X(03)54006-4.CrossRefGoogle ScholarPubMed
Mount, P. M. (1970). Histogenesis of the rostellar hooks of Taenia crassiceps (Zeder, 1800) (Cestoda). Journal of Parasitology 56, 947961.CrossRefGoogle ScholarPubMed
Olson, P. D., Caira, J. N., Jensen, K., Overstreet, R. M., Palm, H. W. and Beveridge, I. (2010). Evolution of the trypanorhynch tapeworms: parasite phylogeny supports independent lineages of sharks and rays. International Journal for Parasitology 40, 223242. doi:10.1016/j.ijp.2009.07.012.CrossRefGoogle ScholarPubMed
Poulin, R. (1996). The evolution of life history strategies in parasitic animals. Advances in Parasitology 37, 107134. doi:10.1016/S0065-308X(08)60220-1.CrossRefGoogle ScholarPubMed
Poulin, R. (2007). Investing in attachment: evolution of anchoring structures in acanthocephalan parasites. Biological Journal of the Linnean Society 90, 637645. doi:10.1111/j.1095-8312.2006.00754.x; (AN 24421653).CrossRefGoogle Scholar
Poulin, R. (2009). Interspecific allometry of morpholgical traits among trematode parasites: selection and constraints. Biological Journal of the Linnean Society 96, 533540. doi:10.1111/j.1095-8312.2008.01163.x; (AN 36622679).CrossRefGoogle Scholar
Poulin, R. and Morand, S. (2004). Parasite Biodiversity. Smithsonian Institution, Washington, DC, USA.Google Scholar
Purvis, A. and Garland, T. (1993). Polytomies in comparative analyses of continuous characters. Systematic Biology 42, 569575. doi:10.1093/sysbio/42.4.569.CrossRefGoogle Scholar
Randhawa, H. S. and Burt, M. D. B. (2008). Determinants of host specificity and comments on attachment site specificity of tetraphyllidean cestodes infecting rajid skates from the northwest Atlantic. Journal of Parasitology 94, 436461. doi:10.1645/GE-1180.1.CrossRefGoogle ScholarPubMed
Randhawa, H. S. and Poulin, R. (2009). Determinants and consequences of interspecific body size variation in tetraphyllidean tapeworms. Oecologia 161, 759769. doi:10.1007/s00442-009-1410-1.CrossRefGoogle ScholarPubMed
Randhawa, H. S. and Poulin, R. (2010). Determinants of tapeworm species richness in elasmobranch fishes: untangling environmental and phylogenetic influences. Ecography 33, doi: 10.1111/j.1600-0587.2010.06169.xCrossRefGoogle Scholar
Rees, G. and Williams, H. H. (1965). The functional morphology of the scolex and the genitalia of Acanthobothrium coronatum (Rud.) (Cestoda: Tetraphyllidea). Parasitology 55, 617651.CrossRefGoogle ScholarPubMed
Reyda, F. B. and Caira, J. N. (2006). Five new species of Acanthobothrium (Cestoda: Tetraphyllidea) from Himantura uarnacoides (Myliobatiformes: Dasyatidae) in Malaysian Borneo. Comparative Parasitology 73, 4971. doi:10.1654/4194.1.CrossRefGoogle Scholar
Skorping, A., Read, A. F. and Keymer, A. E. (1991). Life history covariation in intestinal nematodes in mammals. Oikos 60, 365372.CrossRefGoogle Scholar
Thompson, R. C. A., Hayton, A. R. and Jue Sue, L. P. (1980). An ultrastructural study of the microtriches of adult Proteocephalus tidswelli (Cestoda: Proteocephalidea). Zeitschrift für Parasitenkunde 64, 95–111.CrossRefGoogle ScholarPubMed
Twohig, M. E., Caira, J. N. and Fyler, C. A. (2008). Two new cestode species from the dwarf whipray, Himantura walga (Batoidea: Dasyatidae), from Borneo, with comments on site and mode of attachment. Journal of Parasitology 94, 11181127. doi:10.1645/GE-1475.1.CrossRefGoogle ScholarPubMed
Williams, H. H. (1966). The ecology, functional morphology and taxonomy of Echeneibothrium Beneden, 1849 (Cestoda: Tetraphyllidea), a revision of the genus and comments on Discobothrium Beneden, 1870, Pseudanthobothrium Baer, 1956, and Phormobothrium Alexander, 1963. Parasitology 56, 227285. doi:10.1017/S0031182000070864.CrossRefGoogle ScholarPubMed
Williams, H. H. (1968). Acanthobothrium quadripartitum sp. nov. (Cestoda: Tetraphyllidea) from Raja naevus in the North Sea and English Channel. Parasitology 58, 105110. doi:10.1017/S0031182000073467.CrossRefGoogle ScholarPubMed
Williams, H. H. (1969) The genus Acanthobothrium Beneden 1849 (Cestoda: Tetraphyllidea). Nytt Magasin for Zoologi 17, 156.Google Scholar
Zamparo, D., McLennan, D. A. and Brooks, D. R. (1999). Macroevolutionary patterns of male reproductive investment in a clade of parasitic hermaphrodites. Journal of Parasitology 85, 540544.CrossRefGoogle Scholar
Supplementary material: File

Randhawa supplementary material

Table 1.xls

Download Randhawa supplementary material(File)
File 116.7 KB
Supplementary material: File

Randhawa supplementary material

References.doc

Download Randhawa supplementary material(File)
File 66 KB
Supplementary material: File

Randhawa supplementary material

Appendix.doc

Download Randhawa supplementary material(File)
File 112.6 KB
Supplementary material: File

Randhawa supplementary material

Tables 2.doc

Download Randhawa supplementary material(File)
File 68.6 KB
Supplementary material: File

Randhawa supplementary material

Figure 1.doc

Download Randhawa supplementary material(File)
File 297.5 KB
Supplementary material: File

Randhawa supplementary material

Figure 2.doc

Download Randhawa supplementary material(File)
File 248.3 KB
Supplementary material: File

Randhawa supplementary material

Figure 3.doc

Download Randhawa supplementary material(File)
File 256 KB