Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-18T02:20:45.888Z Has data issue: false hasContentIssue false

Evaluation of immunoglobulin G4 subclass antibody in a peptide-based enzyme-linked immunosorbent assay for the serodiagnosis of human fascioliasis

Published online by Cambridge University Press:  23 August 2007

C. TANTRAWATPAN*
Affiliation:
Graduate Study Office, Faculty of Medicine, Thammasat University, Rangsit Campus, Pathumthani, Thailand
W. MALEEWONG
Affiliation:
Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
C. WONGKHAM
Affiliation:
Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
S. WONGKHAM
Affiliation:
Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
P. M. INTAPAN
Affiliation:
Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
K. NAKASHIMA
Affiliation:
Faculty of Human Health, Tokai Gakuen University, Tenpaku-ku, Nagoya, Aichi, Japan
*
*Corresponding author: Graduate Study Office, Faculty of Medicine, Thammasat University, Rangsit Campus, Paholyothin Road, Klong-luang, Pathumthani 12121, Thailand. Tel: +66 29269767. Fax: +66 29269755. E-mail: [email protected]

Summary

To improve the diagnosis of human fascioliasis caused by Fasciola gigantica, we developed a peptide-based enzyme-linked immunosorbent assay (peptide-based ELISA) based on the detection of specific IgG4 subclass antibody. Two identified B-cell epitopes of F. gigantica cathepsin L1 were synthesized as single synthetic peptides, acetyl-DKIDWRESGYVTELKDQGNC-carboxamide (peptide L) and acetyl-DKIDWRESGYVTEVKDQGNC-carboxamide (peptide V), and their diagnostic potential was evaluated. The sera of 25 patients infected with F. gigantica, 212 patients with other parasitic infections, 32 cholangiocarcinoma patients and 57 healthy controls were analysed. The sensitivity, specificity, accuracy, and positive and negative predictive values of this assay were the same with both peptides at 100%, 99·7%, 99·7%, 96·2% and 100%, respectively. These highly sensitive and specific peptide-based ELISAs for the detection of specific IgG4 antibody could be useful for laboratory diagnosis of human fascioliasis in future large-scale surveys throughout Southeast Asia where this disease is prevalent.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anantaphruti, M. T., Nuamtanong, S. and Dekumyoy, P. (2005). Diagnostic values of IgG4 in human gnathostomiasis. Tropical Medicine and International Health 10, 10131021.CrossRefGoogle ScholarPubMed
Andrews, S. J. (1998). The life cycle of Fasciola hepatica. In Fasciolosis (ed. Dalton, J. P.), pp. 129. CABI Publishing, Wallingford, UK.Google Scholar
Blair, D., Xu, Z. B. and Agatsuma, T. (1999). Paragonimiasis and the genus Paragonimus. Advances in Parasitology 42, 113222.CrossRefGoogle ScholarPubMed
Carnevale, S., Rodriguez, M. I., Guarnera, E. A., Carmona, C., Tanos, T. and Angel, S. O. (2001). Immunodiagnosis of fasciolosis using recombinant procathepsin L cysteine proteinase. Diagnostic Microbiology and Infectious Disease 41, 4349.CrossRefGoogle Scholar
Chanteau, S., Plichart, R., Spiegel, A., Martin, P. M. and Cartel, J. L. (1991). Diagnostic values of ELISA-IgG4 as compared to ELISA-IgG and indirect immunofluorescence, for the routine diagnosis of bancroftian filariasis in the South Pacific. Application on capillary blood collected on filter paper. Tropical Medicine and Parasitology 42, 339342.Google ScholarPubMed
Cornelissen, J. B., Gaasenbeek, C. P., Boersma, W., Borgsteede, F. H. and van Milligen, F. J. (1999). Use of a pre-selected epitope of cathepsin-L1 in a highly specific peptide-based immunoassay for the diagnosis of Fasciola hepatica infections in cattle. International Journal for Parasitology 29, 685696.CrossRefGoogle Scholar
Cornelissen, J. B., Gaasenbeek, C. P., Borgsteede, F. H., Holland, W. G., Harmsen, M. M. and Boersma, W. J. (2001). Early immunodiagnosis of fasciolosis in ruminants using recombinant Fasciola hepatica cathepsin L-like protease. International Journal for Parasitology 31, 728737.CrossRefGoogle ScholarPubMed
Egwang, T. G., Nguiri, C., Kombila, M., Duong, T. H. and Richard-Lenoble, D. (1993). Elevated antifilarial IgG4 antibody levels in microfilaremic and microfilaridermic Gabonese adults and children. American Journal of Tropical Medicine and Hygiene 49, 135142.CrossRefGoogle ScholarPubMed
Erdman, D. D. (1981). Clinical comparison of ethyl acetate and diethyl ether in the formalin-ether sedimentation technique. Journal of Clinical Microbiology 14, 483485.CrossRefGoogle ScholarPubMed
Evengard, B. L., Hammarstrom, L., Smith, C. I., Johansson, S. G. and Linder, E. (1988). Subclass distribution and IgE responses after treatment in human schistosomiasis. Clinical and Experimental Immunology 73, 383388.Google ScholarPubMed
Galen, R. S. (1980). Predictive value and efficiency of laboratory testing. Pediatric Clinics of North America 27, 861869.CrossRefGoogle ScholarPubMed
Genta, R. M. and Lillibridge, J. P. (1989). Prominence of IgG4 antibodies in the human responses to Strongyloides stercoralis infection. Journal of Infectious Diseases 160, 692699.CrossRefGoogle ScholarPubMed
Grams, R., Vichasri-Grams, S., Sobhon, P., Upatham, E. S. and Viyanant, V. (2001). Molecular cloning and characterization of cathepsin L encoding genes from Fasciola gigantica. Parasitology International 50, 105114.CrossRefGoogle ScholarPubMed
Hassan, M. M., Matar, M. A., Mowafy, N., Saleh, A., el-Badrawy el, S., Awad, A. and Ramadan, N. I. (2002). Dot ELISA for measuring anti-Fasciola IgG isotypes among patients with fascioliasis. Journal of the Egyptian Society of Parasitology 32, 571578.Google ScholarPubMed
Hassan, M. M., Mostafa, N. E., Ramadan, M., Nassar, A., Hassounah, O. and Omar, O. (2000). Anti-fasciola IgG isotypes among patients with fascioliasis before and after treatment. Journal of the Egyptian Society of Parasitology 30, 505510.Google ScholarPubMed
Intapan, P. M., Maleewong, W., Sawanyawisuth, K. and Chotmongkol, V. (2003). Evaluation of human IgG subclass antibodies in the serodiagnosis of angiostrongyliasis. Parasitology Research 89, 425429.CrossRefGoogle ScholarPubMed
Intapan, P. M., Maleewong, W., Wongkham, C., Tomanakarn, K., Leamviteevanich, K., Pipitgool, V. and Sukolapong, V. (1998). Excretory-secretory antigenic components of adult Fasciola gigantica recognized by infected human sera. Southeast Asian Journal of Tropical Medicine and Public Health 29, 579583.Google ScholarPubMed
Intapan, P. M., Tantrawatpan, C., Maleewong, W., Wongkham, S., Wongkham, C. and Nakashima, K. (2005). Potent epitopes derived from Fasciola gigantica cathepsin L1 in peptide-based immunoassay for the serodiagnosis of human fascioliasis. Diagnostic Microbiology and Infectious Disease 53, 125129.CrossRefGoogle ScholarPubMed
Iskander, R., Das, P. K. and Aalberse, R. C. (1981). IgG4 antibodies in Egyptian patients with schistosomiasis. International Archives of Allergy and Applied Immunology 66, 200207.CrossRefGoogle ScholarPubMed
Jassim, A., Hassan, K. and Catty, D. (1987). Antibody isotypes in human schistosomiasis mansoni. Parasite Immunology 9, 627650.CrossRefGoogle ScholarPubMed
Lillywhite, J. E., Bundy, D. A., Didier, J. M., Cooper, E. S. and Bianco, A. E. (1991). Humoral immune responses in human infection with the whipworm Trichuris trichiura. Parasite Immunology 13, 491507.CrossRefGoogle ScholarPubMed
Loukas, A., Opdebeeck, J., Croese, J. and Prociv, P. (1996). Immunoglobulin G subclass antibodies against excretory/secretory antigens of Ancylostoma caninum in human enteric infections. American Journal of Tropical Medicine and Hygiene 54, 672676.CrossRefGoogle ScholarPubMed
Maleewong, W., Intapan, P. M., Wongkham, C., Tomanakan, K., Daenseekaew, W. and Sukeepaisarnjaroen, W. (1996). Comparison of adult somatic and excretory-secretory antigens in enzyme-linked immunosorbent assay for serodiagnosis of human infection with Fasciola gigantica. Southeast Asian Journal of Tropical Medicine and Public Health 27, 566569.Google ScholarPubMed
Mas-Coma, S., Bargues, M. D. and Esteben, J. G. (1999). Human fasciolosis. In Fasciolosis, (ed. Dalton, J. P.). pp. 411434. CABI Publishing, Wallingford, UK.Google Scholar
McCarthy, J. and Moore, T. A. (2000). Emerging helminthic zoonoses. International Journal for Parasitology 30, 13511360.CrossRefGoogle Scholar
Moore, D. A., McCroddan, J., Dekumyoy, P. and Chiodini, P. L. (2003). Gnathostomiasis: an emerging imported disease. Emerging Infectious Diseases 9, 647650.CrossRefGoogle ScholarPubMed
O'Neill, S. M., Parkinson, M., Dowd, A. J., Strauss, W., Angels, R. and Dalton, J. P. (1999). Immunodiagnosis of human fascioliasis using recombinant Fasciola hepatica cathepsin L1 cysteine proteinase. American Journal of Tropical Medicine and Hygiene 60, 749751.CrossRefGoogle ScholarPubMed
O'Neill, S. M., Parkinson, M., Strauss, W., Angels, R. and Dalton, J. P. (1998). Immunodiagnosis of Fasciola hepatica infection (fascioliasis) in a human population in the Bolivian Altiplano using purified cathepsin L cysteine proteinase. American Journal of Tropical Medicine and Hygiene 58, 417423.CrossRefGoogle Scholar
Ottesen, E. A., Skvaril, F., Tripathy, S. P., Poindexter, R. W. and Hussain, R. (1985). Prominence of IgG4 in the IgG antibody response to human filariasis. Journal of Immunology 134, 27072712.CrossRefGoogle ScholarPubMed
Pozio, E. (2001). Taxonomy of Trichinella and the epidemiology of infection in the Southeast Asia and Australian regions. Southeast Asian Journal of Tropical Medicine and Public Health 32, 129132.Google ScholarPubMed
Rokni, M. B., Massoud, J., O'Neill, S. M., Parkinson, M. and Dalton, J. P. (2002). Diagnosis of human fasciolosis in the Gilan province of Northern Iran: application of cathepsin L-ELISA. Diagnostic Microbiology and Infectious Disease 44, 175179.CrossRefGoogle ScholarPubMed
Strauss, W., O'Neill, S. M., Parkinson, M., Angels, R. and Dalton, J. P. (1999). Diagnosis of human fasciolosis: detection of anti-cathepsin L antibodies in blood samples collected on filter paper. American Journal of Tropical Medicine and Hygiene 60, 746748.CrossRefGoogle ScholarPubMed
Takahashi, Y., Mingyuan, L. and Waikagul, J. (2000). Epidemiology of trichinellosis in Asia and the Pacific Rim. Veterinary Parasitology 93, 227239.CrossRefGoogle ScholarPubMed
Tantrawatpan, C., Maleewong, W., Wongkham, C., Wongkham, S., Intapan, P. M. and Nakashima, K. (2005). Serodiagnosis of human fascioliasis by a cystatin capture enzyme-linked immunosorbent assay with recombinant Fasciola gigantica cathepsin L antigen. American Journal of Tropical Medicine and Hygiene 72, 8286.CrossRefGoogle ScholarPubMed
World Health Organization (1995). Control of Foodborne Trematode Infections. WHO Technical Report Series No. 849. World Health Organization, Geneva.Google Scholar
Wijffels, G. L., Panaccio, M., Salvatore, L., Wilson, L., Walker, I. D. and Spithill, T. W. (1994). The secreted cathepsin L-like proteinases of the trematode, Fasciola hepatica, contain 3-hydroxyproline residues. The Biochemical Journal 299, 781790.CrossRefGoogle ScholarPubMed
Wongkham, C., Tantrawatpan, C., Intapan, P. M., Maleewong, W., Wongkham, S. and Nakashima, K. (2005). Evaluation of immunoglobulin G subclass antibodies against recombinant Fasciola gigantica cathepsin L1 in an enzyme-linked immunosorbent assay for serodiagnosis of human fascioliasis. Clinical and Diagnostic Laboratory Immunology 12, 11521156.Google Scholar