Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T18:16:20.583Z Has data issue: false hasContentIssue false

Estimation of intestinal nematode prevalence: influence of parasite mating patterns

Published online by Cambridge University Press:  06 April 2009

H. L. Guyatt
Affiliation:
WHO Collaborating Centre for the Epidemiology of Intestinal Parasitic Infections, Wellcome Trust Research Centre for Parasitic Infections, Department of Biology, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BB
D. A. P. Bundy
Affiliation:
WHO Collaborating Centre for the Epidemiology of Intestinal Parasitic Infections, Wellcome Trust Research Centre for Parasitic Infections, Department of Biology, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BB

Summary

Prevalence of infection with intestinal helminths is usually assessed through stool examination. There are limitations in using this technique to measure infection status, since some infected individuals have no patent infection. The relationship between infection assessed by stool examination and actual infection prevalence is investigated for the three major nematode species-Ascaris lumbricoides, Trichuris trichiura and the bookworms-using a model which describes the presence of non-egg producing worm combinations. The analysis demonstrates that stool examination under-estimates the actual infection prevalence, and that the degree of under-estimation is dependent on the level of infection, the nematode species and the parasite sex ratio. These findings have implications for the validity of epidemiological surveys and the evaluation of control programmes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. M. (1982). The population dynamics and control of hookworm and roundworm infections. In Population Dynamics of Infectious Diseases (ed. Anderson, R. M.), pp. 67108. London: Chapman and Hall.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press.CrossRefGoogle Scholar
Anderson, R. M. & Schad, G. A. (1985). Hookworm burdens and faecal egg counts: an analysis of the biological basis of variation. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 812–25.CrossRefGoogle ScholarPubMed
Arfaa, F. & Ghadirian, E. (1977). Epidemiology and mass-treatment of ascariasis in six rural communities in central Iran. American Journal of Tropical Medicine and Hygiene 26, 866–71.CrossRefGoogle ScholarPubMed
Augustine, D. L., Nazmi, M., Helmy, M. & McGavran, E. G. (1928). The ova-parasite ratio for Ancylostoma duodenale and Ascaris lumbricoides. Journal of Parasitology 15, 4551.CrossRefGoogle Scholar
Bundy, D. A. P. (1986). Epidemiological aspects of Trichuris and trichuriasis in Caribbean communities. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 706–18.CrossRefGoogle ScholarPubMed
Bundy, D. A. P., Cooper, E. S., Thompson, D. E., Anderson, R. M. & Didier, J. M. (1987). Age-related prevalence and intensity of Trichuris trichiura in a St. Lucian community. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 8594.CrossRefGoogle Scholar
Bundy, D. A. P., Thompson, D. E., Cooper, E. S., Golden, M. H. N. & Anderson, R. M. (1985). Population dynamics and chemotherapeutic control of Trichuris trichiura infection of children in Jamaica and St. Lucia. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 759–64.CrossRefGoogle ScholarPubMed
Burrows, R. B. (1950). On the estimation of Trichuris worm burdens in patients. Journal of Parasitology 36, 227–31.CrossRefGoogle ScholarPubMed
Chai, J. Y., Kim, K. S., Hong, S. T., Lee, S. H. & Seo, B. S. (1985). Prevalence, worm burden and other epidemiological parameters of Ascaris lumbricoides infection in rural communities in Korea. Korean Journal of Parasitology 23, 241–6.CrossRefGoogle ScholarPubMed
Correa, M. A. & Mellone, O. (1938). Estudo sobre a postura do Trichuris trichiura. Folha Medica 19, 137–9.Google Scholar
De Vlas, S. J. & Gryseels, B. (1992). Underestimation of Schistosoma mansoni prevalences. Parasitology Today 8, 274–7.CrossRefGoogle ScholarPubMed
De Vlas, S. J., Gryseels, B., Van Oortmarssen, G. J., Poldermann, A. M. & Habbema, J. D. F. (1992). A model for variations in single and repeated egg counts in Schistosoma mansoni infections. Parasitology 104, 451–60.CrossRefGoogle Scholar
Delgado, Y., Garnica, R. & Martinez-Murray, R. (1970). L'irregularite de la ponte d'Ascaris lumbricoides. Annales de Parasitologie (Paris) 45, 223–6.Google Scholar
Elkins, D. B. (1987). The epidemiology and control of Ascaris lumbricoides in an Indian fishing community. Ph.D. thesis. Imperial College, University of London.Google Scholar
Elkins, D. B., Haswell-Elkins, M. & Anderson, R. M. (1986). The epidemiology and control of intestinal helminths in the Publicat Lake region of Southern India. I. Study design and pre- and post-treatment observations on Ascaris lumbricoides infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 774–92.CrossRefGoogle Scholar
Feachem, R. G., Bradley, D. J., Garelick, H. & Mara, D. (1983). Sanitation and Disease: Health Aspects of Excreta and Wastewater Management. World Bank Studies in Water Supply and Sanitation No. 3. London: John Wiley and Sons.Google Scholar
Guyatt, H. L. (1992). Parasite population biology and the design and evaluation of helminth control programmes. Ph.D. thesis. Imperial College, University of London.Google Scholar
Guyatt, H. L. & Bundy, D. A. P. (1991). Estimating prevalence of community morbidity due to intestinal helminths: prevalence of infection as an indicator of the prevalence of disease. Transactions of the Royal Society of Tropical Medicine and Hygiene 85, 778–82.CrossRefGoogle ScholarPubMed
Guyatt, H. L., Bundy, D. A. P., Medley, G. F. & Grenfell, B. T. (1990). The relationship between the frequency distribution of Ascaris lumbricoides and the prevalence and intensity of infection in human communities. Parasitology 101, 139–43.CrossRefGoogle ScholarPubMed
Holland, C. V., Crompton, D. W. T., Taren, D. L., Nesheim, M. C., Sanjur, D., Barbeau, I. & Tucker, K. (1987). Ascaris lumbricoides infection in pre-school children from Chiriqui Province, Panama. Parasitology 95, 615–22.CrossRefGoogle ScholarPubMed
Lwambo, N. J. S., Bundy, D. A. P. & Medley, G. F. (1992). A new approach to morbidity risk assessment in hookworm endemic communities. Epidemiology and Infection 108, 469–81.CrossRefGoogle ScholarPubMed
Manalang, C. (1928). Trichuriasis: relation between the number of ova per gram of formed stool and the number of female worms harboured by the host. Philippine Journal of Science 36, 1122.Google Scholar
May, R. M. (1977). Togetherness among schistosomes: its effects on the dynamics of the infection. Mathematical Biosciences 35, 301–43.CrossRefGoogle Scholar
Mello, D. A. (1974). A note on egg production of Ascaris lumbricoides. Journal of Parasitology 60, 380–1.CrossRefGoogle ScholarPubMed
Moosbrugger, H. (1891). Ueber Erkrankung an Trichocephalus dispar. Medzinisches Korrespondenzblatt des Württembergischen ärztlichen Landesvereins Stuttgart 61, 227–30.Google Scholar
Morishhita, K. (1972). Studies on epidemiological aspects of ascariasis in Japan and basic knowledge concerning its control. Progress of Medical Parasitology in Japan 4, 1153.Google Scholar
Pawlowski, Z. S. & Arfaa, F. (1984). Ascariasis. In Tropical and Geographical Medicine (ed. Warren, K. S. & Mahmoud, A. A. F.), pp. 347358. New York: McGraw-Hill Book Company.Google Scholar
Pritchard, D. I., Quinnell, R. J., Slater, A. F. G., McKean, P. G., Dale, D. D. S., Raiko, A. & Keymer, A. E. (1990). The epidemiological significance of acquired immunity to Necator americanus: humoral responses to parasite collagen and excretory-secretory antigens. Parasitology 100, 317–26.CrossRefGoogle Scholar
Seo, B. S., Cho, S. Y. & Chai, J. Y. (1979). Frequency distribution of Ascaris lumbricoides in rural Koreans with special reference on the effect of changing endemicity. Korean Journal of Parasitology 17, 105–13.CrossRefGoogle ScholarPubMed
Sinniah, B. (1982). Daily egg production of Ascaris lumbricoides: the distribution of eggs in the faeces and the variability of egg counts. Parasitology 84, 167–75.CrossRefGoogle ScholarPubMed
Sinniah, B., Kan-Chua, S. P. & Subramaniam, K. (1983). Evaluating the reliability of egg counts in determining intensity of Ascaris infections. In Collected Papers on the Control of Soil-transmitted Helminthiases, Vol. II, pp. 510. Tokyo: Asian Parasite Control Organisation.Google Scholar
Yokogawa, S. & Wakejima, T. (1932). On faecal examination for parasites of schoolchildren of Formosa-Chinese parentage, especially medical and biological observation on Ascaris lumbricoides. Journal of the Formosan Medical Association 31, 552–70; 654–87.Google Scholar