Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-29T02:03:00.194Z Has data issue: false hasContentIssue false

Eradication and control of livestock ticks: biological, economic and social perspectives

Published online by Cambridge University Press:  18 May 2011

ALAN R. WALKER*
Affiliation:
Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall Place, Edinburgh EH9 1QH, UK
*
*Corresponding author: Tel: 44 (0) 131 650 1000. E-mail: [email protected]

Summary

Comparisons of successful and failed attempts to eradicate livestock ticks reveal that the social context of farming and management of the campaigns have greater influence than techniques of treatment. The biology of ticks is considered principally where it has contributed to control of ticks as practiced on farms. The timing of treatments by life cycle and season can be exploited to reduce numbers of treatments per year. Pastures can be managed to starve and desiccate vulnerable larvae questing on vegetation. Immunity to ticks acquired by hosts can be enhanced by livestock breeding. The aggregated distribution of ticks on hosts with poor immunity can be used to select animals for removal from the herd. Models of tick population dynamics required for predicting outcomes of control methods need better understanding of drivers of distribution, aggregation, stability, and density-dependent mortality. Changing social circumstances, especially of land-use, has an influence on exposure to tick-borne pathogens that can be exploited for disease control.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahoussou, S., Lancelot, R., Sanford, B., Porphyre, T., Bartlette-Powell, P., Compton, E., Henry, L., Maitland, R., Lloyd, R., Mattioli, R., Chavernac, D., Stachurski, F., Martinez, D., Meyer, D. F., Vachiery, N., Pegram, R. and Lefrancois, T. (2010). Analysis of Amblyomma surveillance data in the Caribbean: lessons for future control programmes. Veterinary Parasitology 167, 327335.CrossRefGoogle ScholarPubMed
Alderink, F. J. and McCauley, E. H. (1988). The probability of the spread of Amblyomma variegatum in the Caribbean. Preventive Veterinary Medicine 6, 285298.CrossRefGoogle Scholar
Angus, B. A. (1996). The history of the cattle tick Boophilus microplus in Australia and achievements in its control. International Journal for Parasitology 26, 13411355.CrossRefGoogle ScholarPubMed
Angus, B. M. (2003). Tick Fever and the Cattle Tick in Australia, 1829–1996. Beverley M. Angus, (compact disc ISBN 0 9750104 17) Brisbane.Google Scholar
Anonymous (1984 a). Ecological principles in tick control. In Ticks and Tick-borne Disease Control. A Practical Field Manual. Vol. 1 Tick Control, pp. 188245. Food and Agriculture Organisation, Rome, Italy.Google Scholar
Anonymous (1984 b). Epidemiology of tick-borne diseases: epidemiological parameters and their application of the control of tick borne disease. In Ticks and Tick-borne Disease Control. A Practical Field Manual. Vol. 2 Tick-borne Disease Control, pp. 373381. Food and Agriculture Organisation, Rome, Italy.Google Scholar
Anonymous (2004). Ticks of Veterinary and Medical Importance: Africa; the Mediterranean Basin; Latin America and the Caribbean. (Set of 3 compact discs) Second International Consortium on Ticks and Tick Borne Diseases, Utrecht, The Netherlands.Google Scholar
Balashov, Y. S. (1972). Bloodsucking ticks (Ixodoidea): vectors of diseases of man and animals. Miscellaneous Publications of the Entomological Society of America 8, 161376.Google Scholar
Barré, N. and Garris, G. I. (1989). Biology and ecology of Amblyomma variegatum in Guadeloupe and its importance in eradication strategy. In The Eradication of Ticks: Animal Production and Health Paper 75, (ed. Anonymous), pp. 230245. Food and Agriculture Organisation, Rome, Italy.Google Scholar
Bazarusanga, T., Geysen, D., Vercruysse, J. and Madder, M. (2007). An update on the ecological distribution of ixodid ticks infesting cattle in Rwanda: countrywide cross-sectional survey in the wet and the dry season. Experimental and Applied Acarology 43, 279291.CrossRefGoogle ScholarPubMed
Berkvens, D. L., Pegram, R. G. and Brandt, J. R. (1995). A study of the diapausing behavior of Rhipicephalus appendiculatus and R. zambeziensis under quasi-natural conditions in Zambia. Medical and Veterinary Entomology 9, 307315.CrossRefGoogle Scholar
Bezuidenhout, J. D. and Stutterheim, C. J. (1980). A critical evaluation of the role played by the red-billed oxpecker, Buphagus erythrorhynchus, in the biological control of ticks. Onderstepoort Journal of Veterinary Research 47, 5157.Google ScholarPubMed
Bishop, R., Sohanpal, B. K., Kariuki, D. P., Young, A. S., Nene, V., Baylis, H., Allsopp, B. A., Spooner, P. R., Dolan, T. T. and Morzaria, S. P. (1992). Detection of a carrier state in Theileria parva infected cattle by the polymerase chain reaction. Parasitology 104, 215232.CrossRefGoogle ScholarPubMed
Bourn, D., Reid, R., Rogers, D. J., Snow, W. and Wint, W. (2001). Environmental Change and the Autonomous Control of Tsetse and Trypanosomiasis in sub-Saharan Africa. Environmental Research Group Oxford Ltd, Oxford, UK.Google Scholar
Bram, R. A. and George, J. E. (2000). Introduction of nonindigenous arthropod pests of animals. Journal of Medical Entomology 37, 18.CrossRefGoogle ScholarPubMed
Bram, R. A., George, J. E., Reichard, R. E. and Tabachnick, W. J. (2002). Threat of foreign arthropod-borne pathogens to livestock in the United States. Journal of Medical Entomology 39, 405416.CrossRefGoogle ScholarPubMed
Branagan, D. (1973 a). Developmental periods of ixodid tick Rhipicephalus appendiculatus Neum. under laboratory conditions. Bulletin of Entomological Research 63, 155168.CrossRefGoogle Scholar
Branagan, D. (1973 b). Observations on the development and survival of the ixodid tick Rhipicephalus appendiculatus under quasi natural conditions in Kenya. Tropical Animal Health and Production 5, 153165.CrossRefGoogle ScholarPubMed
Brizuela, C. M., Ortellado, C. A., Sanchez, T. I., Osoria, O. and Walker, A. R. (1996). Formulation of integrated control of Boophilus microplus in Paraguay: analysis of natural infestations. Veterinary Parasitology 63, 95108.CrossRefGoogle ScholarPubMed
Chiera, J. W., Newson, R. M. and Cunningham, M. P. (1985). Cumulative effects of host-resistance on Rhipicephalus appendiculatus in the laboratory. Parasitology 90, 401408.CrossRefGoogle Scholar
Cook, A. J. C. (1991). Communal farmers and tick control: a field-study in Zimbabwe. Tropical Animal Health and Production 23, 161166.CrossRefGoogle ScholarPubMed
Coleman, P. G., Perry, B. D. and Woolhouse, M. E. J. (2001). Endemic stability: a veterinary idea applied to human public health. Lancet 357, 12841286.CrossRefGoogle ScholarPubMed
Corn, J. L., Berger, P. and Mertins, J. W. (2009). Surveys for ectoparasites on wildlife associated with Amblyomma variegatum infested livestock in St Croix, US Virgin Islands. Journal of Medical Entomology 46, 14831489.CrossRefGoogle Scholar
Corson, M. S., Teel, P. D. and Grant, W. E. (2004). Microclimate influence in a physiological model of cattle-fever tick (Boophilus spp.) population dynamics. Ecological Modelling 180, 487514.CrossRefGoogle Scholar
Cranefield, P. F. (1991). Science and empire: East Coast fever in Rhodesia and the Transvaal. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Cumming, G. S. (1999). Host distributions do not limit the species ranges of most African ticks (Acari: Ixodida). Bulletin of Entomological Research 89, 303327.CrossRefGoogle Scholar
Cumming, G. S. (2002). Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecology 83, 255268.CrossRefGoogle Scholar
Curtice, C. (1891). The biology of the cattle tick. Journal of Comparative Medicine and Veterinary Archives 13, 313319.Google Scholar
Daniel, M., Kolář, J. and Zeman, P. (2008). Analysing and predicting the occurrence of ticks and tick-borne pathogens using GIS. In Ticks: Biology, Disease and Control (ed. Bowman, A. S. and Nuttall, P. A.), pp. 377407, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
De Castro, J. J., James, A. D., Minjauw, B., DiGiulio, G., Permin, A., Pegram, R. G., Chizyuka, H. G. B. and Sinyangwe, P. (1997). Long-term studies on the economic impact of ticks on Sanga cattle in Zambia. Experimental and Applied Acarology 21, 319.CrossRefGoogle ScholarPubMed
Di Giulio, G., Lynen, G., Morzaria, S., Oura, C. and Bishop, R. (2009). Live immunization against East Coast fever – current status. Trends in Parasitology 25, 8592.CrossRefGoogle ScholarPubMed
Dye, C. (1992). The analysis of parasite transmission by bloodsucking insects. Annual Review of Entomology 37, 119.CrossRefGoogle ScholarPubMed
Elder, J. K., Hass, C. R., Reid, T. J., Kearnan, J. F. and Emmerson, F. R. (1985). Changes in cattle tick control practices in south eastern Queensland from 1977 to 1982. Australian Veterinary Journal 62, 218222.CrossRefGoogle ScholarPubMed
Elder, J. K., Kearnan, J. F., Waters, K. S., Dunwell, G. H., Emmerson, F. R., Knott, S. G. and Morris, R. S. (1980). A survey concerning cattle tick control in Queensland, 4. Use of resistant cattle and pasture spelling. Australian Veterinary Journal 56, 219223.CrossRefGoogle ScholarPubMed
Ellis, P. R. (1987). Interactions between parasite and vector control, animal productivity and rural welfare. International Journal for Parasitology 17, 577585.CrossRefGoogle ScholarPubMed
Evans, D. E. (1992). Tick infestation of livestock and tick control methods in Brazil: a situation report. Insect Science and its Application 13, 629643.Google Scholar
Fivaz, B. H. (1989). Immune suppression induced by the brown ear tick Rhipicephalus appendiculatus Neumann, 1901. Journal of Parasitology 75, 946952.CrossRefGoogle ScholarPubMed
Fivaz, B. H. and De Waal, D. T. (1993). An evaluation of strategic and short interval tick control in indigenous exotic and crossbred cattle. Tropical Animal Health and Production 25, 1928.CrossRefGoogle ScholarPubMed
Garris, G. I. (1984). Colonization and life cycle of Ambylomma variegatum in the laboratory in Puerto Rico. Journal of Medical Entomology 21, 8690.CrossRefGoogle Scholar
George, J. E. (1989 a). Cattle fever tick eradication programme in the USA: history, achievements, problems and implications for other countries. In The Eradication of Ticks: Animal Production and Health Paper, Number 75, (ed. Anonymous), pp. 17. Food and Agriculture Organisation, Rome, Italy.Google Scholar
George, J. E. (1989 b). Wildlife as a constraint to tick eradication of Boophilus spp. In The Eradication of Ticks: Animal Production and Health Paper, Number 75, (ed. Anonymous), pp. 146153. Food and Agriculture Organisation, Rome, Italy.Google Scholar
George, J. E., Pound, J. M. and Davey, R. B. (2008). Acaricides for controlling ticks on cattle and the problem of acaricide resistance. In Ticks: Biology, Disease and Control (ed. Bowman, A. S. and Nuttall, P. A.), pp. 408423. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Gitau, G. K., Perry, B. D. and McDermott, J. J. (1999). The incidence, calf morbidity and mortality due to Theileria parva infections in smallholder dairy farms in Murang'a District, Kenya. Preventive Veterinary Medicine 39, 6579.CrossRefGoogle ScholarPubMed
Graf, J. F., Gogolewski, R., Leach-Bing, N., Sabatini, G. A., Molento, M. B., Bordin, E. L. and Arantes, G. J. (2004). Tick control: an industry point of view. Parasitology 129, (Suppl.) S427S442.CrossRefGoogle ScholarPubMed
Graham, O. H. and Hourrigan, J. L. (1977). Eradication programs for the arthropod parasites of livestock. Journal of Medical Entomology 13, 629658.CrossRefGoogle ScholarPubMed
Gutsche, T. (1979). There was a Man: the Life and Times of Sir Arnold Theiler K.C.M.G. of Onderstepoort. Howard Timmins, Cape Town, South Africa.Google Scholar
Harley, K. L. S. and Wilkinson, P. R. (1971). Modification of pasture spelling to reduce acaricide treatments for cattle tick control. Australian Veterinary Journal 47, 108111.CrossRefGoogle ScholarPubMed
Hassan, S. M., Dipeolu, O. O. and Munyinyi, D. M. (1992). Influence of exposure period and management methods on the effectiveness of chickens as predators of ticks infesting cattle. Veterinary Parasitology 43, 301309.CrossRefGoogle ScholarPubMed
Hernández, A. F., Teel, P. D., Corson, M. S. and Grant, W. E. (2000). Simulation of rotational grazing to evaluate integrated pest management strategies for Boophilus microplus (Acari: Ixodidae) in Venezuela. Veterinary Parasitology 92, 139149.CrossRefGoogle Scholar
Hewetson, R. W. (1972). The inheritance of resistance by cattle to cattle tick. Australian Veterinary Journal 48, 299303.CrossRefGoogle ScholarPubMed
Horak, I. G., Gallivan, G. J. and Spickett, A. M. (2011). The dynamics of questing ticks collected for 164 consecutive months off the vegetation of two landscape zones in the Kruger National Park (1988–2002). I. Total ticks, Amblyomma hebraeum and Rhipicephalus decoloratus. Onderstepoort Journal of Veterinary Research (in the Press).Google ScholarPubMed
Horak, I. G., Nyangiwe, N., DeMatos, C. and Neves, L. (2009). Species composition and geographic distribution of ticks infesting cattle, goats and dogs in a temperate and in a subtropical region of south-east Africa. Onderstepoort Journal of Veterinary Research 76, 263276.CrossRefGoogle Scholar
Hugh-Jones, M. (1991). LANDSAT-TM identification of the habitats of the cattle tick, Amblyomma variegatum, in Guadeloupe, French Windward Islands. Preventive Veterinary Medicine 11, 355356.CrossRefGoogle Scholar
Jongejan, F., Pegram, R. G., Zivkovic, D., Hensen, E. J., Mwase, E. T., Thielemans, M. J. C., Cosse, A., Niewold, T. A., Elsaid, A. and Uilenberg, G. (1989). Monitoring of naturally acquired and artificially induced immunity to Amblyomma variegatum and Rhipicephalus appendiculatus ticks under field and laboratory conditions. Experimental and Applied Acarology 7, 181199.CrossRefGoogle ScholarPubMed
Jonsson, N. N. (2006). The productivity effects of cattle tick (Boophilus microplus) infestation on cattle, with particular reference to Bos indicus cattle and their crosses. Veterinary Parasitology 137, 110.CrossRefGoogle ScholarPubMed
Jonsson, N. N., Davis, R. and De Witt, M. (2001). An estimate of the economic effects of cattle tick (Boophilus microplus) infestation on Queensland dairy farms. Australian Veterinary Journal 79, 826831.CrossRefGoogle ScholarPubMed
Jonsson, N. N. and Matschoss, A. L. (1998). Attitudes and practices of Queensland dairy farmers to the control of the cattle tick, Boophilus microplus. Australian Veterinary Journal 76, 746751.CrossRefGoogle Scholar
Kaiser, M. N., Sutherst, R. W. and Bourne, A. S. (1982). The relationship between ticks and zebu cattle in southern Uganda. Tropical Animal Health and Production 14, 6374.CrossRefGoogle ScholarPubMed
Kaiser, M. N., Sutherst, R. W. and Bourne, A. S. (1991). Tick (Acarina, Ixodidae) infestations on zebu cattle in northern Uganda. Bulletin of Entomological Research 81, 257262.CrossRefGoogle Scholar
Kaiser, M. N., Sutherst, R. W., Bourne, A. S., Gorissen, L. and Floyd, R. B. (1988). Population-dynamics of ticks on Ankole cattle in 5 ecological zones in Burundi and strategies for their control. Preventive Veterinary Medicine 6, 199222.CrossRefGoogle Scholar
Kiffner, C., Lodige, C., Alings, M., Vor, T. and Ruhe, F. (2010). Abundance estimation of Ixodes ticks (Acari: Ixodidae) on roe deer (Capreolus capreolus). Experimental and Applied Acarology 52, 7384.CrossRefGoogle ScholarPubMed
Kivaria, F. M., Ruheta, M. R., Mkonyi, P. A. and Malamsha, P. C. (2007). Epidemiological aspects and economic impact of bovine theileriosis (East Coast fever) and its control: a preliminary assessment with special reference to Kibaha district, Tanzania. Veterinary Journal 173, 384390.CrossRefGoogle ScholarPubMed
Knülle, W. and Devine, T. L. (1972). Evidence for active and passive components of sorption of atmospheric water vapour by larvae of the tick Dermacentor variabilis. Journal of Insect Physiology 18, 16531664.CrossRefGoogle ScholarPubMed
Latif, A. A., Hove, T., Kanhai, G. K. and Masaka, S. (2001). Laboratory and field investigations into the Theileria parva carrier-state in cattle in Zimbabwe. Onderstepoort Journal of Veterinary Research 68, 203208.Google ScholarPubMed
Latif, A. A., Nokoe, S., Punyua, D. K. and Capstick, P. B. (1991 a). Tick infestations on zebu cattle in western Kenya: quantitative assessment of host-resistance. Journal of Medical Entomology 28, 122126.CrossRefGoogle ScholarPubMed
Latif, A. A., Punyua, D. K., Capstick, P. B. and Newson, R. M. (1991 b). Tick infestations on zebu cattle in western Kenya: host-resistance to Rhipicephalus appendiculatus (Acari, Ixodidae). Journal of Medical Entomology 28, 127132.CrossRefGoogle ScholarPubMed
Lawrence, J. A. (1992). History of bovine theileriosis in southern Africa. In The Epidemiology of Theileriosis in Africa (ed. Norval, R. A. I., Perry, B. D. and Young, A. S.), pp. 140. Academic Press, London, UK.Google Scholar
Lawrence, J. A., Foggin, C. M. and Norval, R. A. I. (1980). The effects of war on the control of diseases of livestock in Rhodesia (Zimbabwe). Veterinary Record 107, 8285.CrossRefGoogle Scholar
Lees, A. D. (1964). The effect of ageing and locomotor activity on the water transport mechanism of ticks. In Proceedings of the First International Congress of Acarology (ed. Woolley, T. A.) Acarologia 6, 315323.Google Scholar
Lounsbury, C. P. (1903). Ticks and African Coast Fever. Transvaal Agricultural Journal 2, 413.Google Scholar
Macdonald, G. (1952). The analysis of equilibrium in malaria. Tropical Disease Bulletin 49, 813829.Google ScholarPubMed
MacLeod, J., Colbo, M. H., Madbouly, M. H. and Mwanaumo, B. (1977). Ecological studies of ixodid ticks in Zambia. III. Seasonal activity and attachment sites. Bulletin of Entomological Research 67, 161173.CrossRefGoogle Scholar
Mahoney, D. F. and Ross, D. R. (1972). Epizootiological factors in the control of bovine babesiosis. Australian Veterinary Journal 48, 292298.CrossRefGoogle ScholarPubMed
Matthyse, J. G. and Colbo, M. H. (1987). The ixodid ticks of Uganda. Entomological Society of America, College Park, Maryland, USA.CrossRefGoogle Scholar
Meltzer, M. I., Norval, R. A. I. and Donachie, P. L. (1995). Effects of tick infestation and tick-borne disease infections (heartwater, anaplasmosis and babesiosis) on the lactation and weight-gain of Mashona cattle in south-eastern Zimbabwe. Tropical Animal Health and Production 27, 129144.CrossRefGoogle ScholarPubMed
Mount, G. A., Haile, D. G., Davey, R. B. and Cooksey, L. M. (1991). Computer-simulation of Boophilus cattle tick population-dynamics. Journal of Medical Entomology 28, 223240.CrossRefGoogle Scholar
Mukhebi, A. W., Kariuki, D. P., Mussukuya, E., Mullins, G., Ngumi, P. N., Thorpe, W. and Perry, B. D. (1995). Assessing the economic-impact of immunization against East Coast fever: a case-study in coast-province, Kenya. Veterinary Record 137, 1722.CrossRefGoogle ScholarPubMed
Mukhebi, A. W., Perry, B. D. and Kruska, R. (1992). Estimated economics of theileriosis control in Africa. Preventive Veterinary Medicine 12, 7385.CrossRefGoogle Scholar
Mulumba, M., Speybroeck, N., Billiouw, M., Berkvens, D. L., Geysen, D. M. and Brandt, J. R. A. (2000). Transmission of theileriosis in the traditional farming sector in the Southern Province of Zambia during 1995–1996. Tropical Animal Health and Production 32, 303314.CrossRefGoogle ScholarPubMed
Ndiritu, C. G. and McLeod, A. (1995). Institutionalisation of veterinary epidemiology and economics: the Kenyan experience. Preventive Veterinary Medicine 25, 93106.CrossRefGoogle Scholar
Needham, G. R. and Teel, P. D. (1986). Water balance by ticks between bloodmeals. In Morphology, Physiology and Behavioral Biology of Ticks (ed. Sauer, J. R. and Hair, J. A.), pp. 100140. Ellis Horwood Ltd, Chichester, UK.Google Scholar
Newson, R. M., Chiera, J. W., Young, A. S., Dolan, T. T., Cunningham, M. P. and Radley, D. E. (1984). Survival of Rhipicephalus appendiculatus (Acarina, Ixodidae) and persistence of Theileria parva (Apicomplexa, Theileriidae) in the field. International Journal for Parasitology 14, 483489.CrossRefGoogle ScholarPubMed
Norval, R. A. I., Lawrence, J. A., Young, A. S., Perry, B. D., Dolan, T. T. and Scott, J. (1991). Theileria parva: influence of vector, parasite and host relationships on the epidemiology of theileriosis in southern Africa. Parasitology 102, 347356.CrossRefGoogle Scholar
Norval, R. A. I., Perry, B. D. and Young, A. S. (1992). The Epidemiology of Theileriosis in Africa. Academic Press, London, UK.Google Scholar
Norval, R. A. I., Sutherst, R. W., Kurki, J., Gibson, J. D. and Kerr, J. D. (1988). The effect of the brown ear-tick Rhipicephalus appendiculatus on the growth of Sanga and European breed cattle. Veterinary Parasitology 30, 149164.CrossRefGoogle ScholarPubMed
Ochanda, H., Young, A. S. and Medley, G. F. (2003). Survival of Theileria parva in its nymphal tick vector, Rhipicephalus appendiculatus, under laboratory and quasi-natural conditions. Parasitology 126, 571576.Google ScholarPubMed
Ochanda, H., Young, A. S., Wells, C., Medley, G. F. and Perry, B. D. (1996). Comparison of the transmission of Theileria parva between different instars of Rhipicephalus appendiculatus. Parasitology 113, 243253.CrossRefGoogle ScholarPubMed
Ogden, N. H., Gwakisa, P., Swai, E., French, N. P., Fitzpatrick, J., Kambarage, D. and Bryant, M. (2003). Evaluation of PCR to detect Theileria parva in field-collected tick and bovine samples in Tanzania. Veterinary Parasitology 112, 177183.CrossRefGoogle ScholarPubMed
Okello-Onen, J., Hassan, S. M. and Essuman, S. (1999). Taxonomy of African Ticks, and Identification Manual. International Centre of Insect Physiology and Ecology, Nairobi, Kenya.Google Scholar
Okello-Onen, J., Mukhebi, A. W., Tukahirwa, E. M., Musisi, G., Bode, E., Heinonen, R., Perry, B. D. and Opuda-Asibo, J. (1998). Financial analysis of dipping strategies for indigenous cattle under ranch conditions in Uganda. Preventive Veterinary Medicine 33, 241250.CrossRefGoogle ScholarPubMed
Pavlovskϊ, E. N. (1966). Natural Nidality of Transmissible Diseases: with Special Reference to the Landscape Epidemiology of Zooanthroponoses. University of Illinois Press, Urbana, IL, USA.CrossRefGoogle Scholar
Pegram, R. (2010). Thirteen Years of Hell in Paradise: an Account of the Caribbean Amblyomma Programme. Trafford Publishing, Bloomington, Indiana, USA.Google Scholar
Pegram, R. G. and Eddy, C. (2002). Progress towards the eradication of Amblyomma variegatum from the Caribbean. Experimental and Applied Acarology 28, 273281.CrossRefGoogle ScholarPubMed
Pegram, R. G., Hargreaves, S. K. and Berkvens, D. L. (1995). Tick control: a standardized terminology. Medical and Veterinary Entomology 9, 337338.CrossRefGoogle ScholarPubMed
Pegram, R. G., James, A. D., Oosterwijk, G. P. M., Killorn, K. J., Lemche, J., Ghirotti, M., Tekle, Z., Chizyuka, H. G. B., Mwase, E. T. and Chizhuka, F. (1991). Studies on the economics of ticks in Zambia. Experimental and Applied Acarology 12, 926.CrossRefGoogle ScholarPubMed
Pegram, R. G., Lemche, J., Chizyuka, H. G. B., Sutherst, R. W., Floyd, R. B., Kerr, J. D. and McCosker, P. J. (1989). Effect of tick control on liveweight gain of cattle in central Zambia. Medical and Veterinary Entomology 3, 313320.CrossRefGoogle ScholarPubMed
Pegram, R. G., Wilson, D. D. and Hansen, J. W. (2000). Past and present national tick control programs: why they succeed or fail. Annals of the New York Academy of Sciences 916, 546554.CrossRefGoogle ScholarPubMed
Pound, J. M., Miller, J. A., George, J. E. and Lemeilleur, C. A. (2000). The ‘4-Poster’ passive topical treatment device to apply acaricide for controlling ticks (Acari: Ixodidae) feeding on white-tailed deer. Journal of Medical Entomology 37, 588594.CrossRefGoogle ScholarPubMed
Randolph, S. E. (1994 a). Population dynamics and density-dependent seasonal mortality indices of the tick Rhipicephalus appendiculatus in eastern and southern Africa. Medical and Veterinary Entomology 8, 351368.CrossRefGoogle ScholarPubMed
Randolph, S. E. (1994 b). Density-dependent acquired resistance to ticks in natural hosts, independent of concurrent infection with Babesia microti. Parasitology 108, 413419.CrossRefGoogle ScholarPubMed
Randolph, S. E. (1997). Abiotic and biotic determinants of the seasonal dynamics of the tick Rhipicephalus appendiculatus in South Africa. Medical and Veterinary Entomology 11, 2537.CrossRefGoogle ScholarPubMed
Randolph, S. E. (2004). Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology 129 (Suppl.) S37S65.CrossRefGoogle ScholarPubMed
Randolph, S. E. (2008). The impact of tick ecology on pathogen transmission dynamics. In Ticks: Biology, Disease and Control (ed. Bowman, A. S. and Nuttall, P. A.), pp. 4072. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Randolph, S. E., Green, R. M., Hoodless, A. N. and Peacey, M. F. (2002). An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. International Journal for Parasitology 32, 979989.CrossRefGoogle ScholarPubMed
Randolph, S. E., Miklisova, D., Lysy, J., Rogers, D. J. and Labuda, M. (1999). Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 118, 177186.CrossRefGoogle ScholarPubMed
Randolph, S. E. and Rogers, D. J. (1997). A generic population model for the African tick Rhipicephalus appendiculatus. Parasitology 115, 265279.CrossRefGoogle ScholarPubMed
Rivero, A., Vézilier, J., Weill, M., Read, A. F. and Gandon, S. (2010). Insecticide control of vector-borne diseases: when is insecticide resistance a problem? Public Library of Science, Pathogens, 6, e1001000.Google ScholarPubMed
Rubaire-Akiiki, C. M., Okello-Onen, J., Musunga, D., Kabagambe, E. K., Vaarst, M., Okello, D., Opolot, C., Bisagaya, A., Okori, C., Bisagati, C., Ongyera, S. and Mwayi, M. T. (2006). Effect of agro-ecological zone and grazing system on incidence of East Coast fever in calves in Mbale and Sironko Districts of Eastern Uganda. Preventive Veterinary Medicine 75, 251266.CrossRefGoogle ScholarPubMed
Schmidtmann, E. T. (1994). Ecologically based strategies for controlling ticks. In Ecological Dynamics of Tick-borne Zoonoses (ed. Sonenshine, D. E. and Mather, T. N.), pp. 240280. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Seebeck, R. M., Springell, P. H. and O'Kelly, J. C. (1971). Alterations in host metabolism by the specific and anorectic effects of the cattle tick (Boophilus microplus) I: food intake and body weight growth. Australian Journal of Biological Science 24, 373380.CrossRefGoogle ScholarPubMed
Seifert, G. W. (1971). Variations between and within breeds of cattle in resistance to field infestations of the cattle tick (Boophilus microplus). Australian Journal of Agricultural Research 22, 159168.CrossRefGoogle Scholar
Seifert, G. W. (1984). Selection of beef cattle in Northern Australia for resistance to the cattle tick (Boophilus microplus): research and application. Preventive Veterinary Medicine 2, 553558.CrossRefGoogle Scholar
Shaw, D. J., Grenfell, B. T. and Dobson, A. P. (1998). Patterns of macroparasite aggregation in wildlife host populations. Parasitology 117, 597610.CrossRefGoogle ScholarPubMed
Short, N. J., Floyd, R. B., Norval, R. A. I. and Sutherst, R. W. (1989 a). Development rates, fecundity and survival of developmental stages of the ticks Rhipicephalus appendiculatus, Boophilus decoloratus and Boophilus microplus under field conditions in Zimbabwe. Experimental and Applied Acarology 6, 123141.CrossRefGoogle ScholarPubMed
Short, N. J., Floyd, R. B., Norval, R. A. I. and Sutherst, R. W. (1989 b). Survival and behavior of unfed stages of the ticks Rhipicephalus appendiculatus, Boophilus decoloratus and Boophilus microplus under field conditions in Zimbabwe. Experimental and Applied Acarology 6, 215236.CrossRefGoogle Scholar
Smith, R. D. (1983). Babesia bovis: computer simulation of the relationship between tick vector, parasite and bovine host. Experimental Parasitology 56, 2740.CrossRefGoogle ScholarPubMed
Smith, T. and Kilborne, F. L. (1893). Investigations into the nature, causation and prevention of Texas or southern cattle fever. Bulletin of the Bureau of Animal Industry, United States Department of Agriculture, Washington 1, 177304.Google Scholar
Sonenshine, D. (1991). The Biology of Ticks (vols 1 and 2). Oxford University Press, Oxford, UK.Google Scholar
Sonenshine, D. E. and Mather, T. N. (1994). Ecological Dynamics of Tick-borne Zoonoses. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Southwood, T. R. E. (1978). Ecological Methods with Particular Reference to the Study of Insect Populations. Chapman and Hall, London, UK.Google Scholar
Spickett, A. M., Gallivan, G. J. and Horak, I. G. (2011). The dynamics of questing ticks collected for 164 consecutive months off the vegetation of two landscape zones in the Kruger National Park (1988–2002). II. Rhipicephalus appendiculatus and Rhipicephalus zambeziensis. Onderstepoort Journal of Veterinary Research (in the Press).CrossRefGoogle ScholarPubMed
Sserugga, J. N., Jonsson, N. N., Bock, R. E. and More, S. J. (2003). Serological evidence of exposure to tick fever organisms in young cattle on Queensland dairy farms. Australian Veterinary Journal 81, 147152.CrossRefGoogle ScholarPubMed
Stachurski, F. and Lancelot, R. (2006). Footbath acaricide treatment to control cattle infestation by the tick Amblyomma variegatum. Medical and Veterinary Entomology 20, 402412.CrossRefGoogle ScholarPubMed
Strom, C. (2004). Editorials and explosions: insights into grassroots opposition to tick eradication in Georgia, 1915–1920. Georgia Historical Quarterly 88, 197214.Google Scholar
Strom, C. (2009). Making Catfish Bait out of Government Boys: the Fight Against Cattle Ticks and Transformation of the Yeoman South. The University of Georgia Press, Athens, GA, USA and London, UK.Google Scholar
Seifert, G. W. (1971). Variations between and within breeds of cattle in resistance to field infestations of the cattle tick (Boophilus microplus). Australian Journal of Agricultural Research 22, 159168.CrossRefGoogle Scholar
Seifert, G. W. (1984). Selection of beef cattle in Northern Australia for resistance to the cattle tick (Boophilus microplus): research and application. Preventive Veterinary Medicine 2, 553558.CrossRefGoogle Scholar
Sutherst, R. W., Floyd, R. B., Bourne, A. S. and Dallwitz, M. J. (1986). Cattle grazing behavior regulates tick populations. Experientia 42, 194196.CrossRefGoogle Scholar
Sutherst, R. W. and Maywald, G. F. (1985). A computerised system for matching climates in ecology. Agriculture, Ecosystems and Environment 13, 281299.CrossRefGoogle Scholar
Sutherst, R. W., Maywald, G. F., Kerr, J. D. and Stegeman, D. A. (1983). The effect of cattle tick (Boophilus microplus) on the growth of Bos indicus x Bos taurus steers. Australian Journal of Agricultural Research 34, 317327.CrossRefGoogle Scholar
Sutherst, R. W., Norton, G. A., Barlow, N. D., Conway, G. R., Birley, M. and Comins, H. N. (1979 a). An analysis of management strategies for cattle tick (Boophilus microplus) control in Australia. Journal of Applied Ecology 16, 359382.CrossRefGoogle Scholar
Sutherst, R. W., Wagland, B. M. and Roberts, J. A. (1978). Effect of density on survival of Boophilus microplus on previously unexposed cattle. International Journal for Parasitology 8, 321324.CrossRefGoogle ScholarPubMed
Sutherst, R. W., Wharton, R. H., Cook, I. M., Sutherland, I. D. and Bourne, A. S. (1979 b). Long-term population studies on the cattle tick (Boophilus microplus) on untreated cattle selected for different levels of tick resistance. Australian Journal of Agricultural Research 30, 353368.CrossRefGoogle Scholar
Symons, L. E. A. (1985). Anorexia: occurrence, pathophysiology and possible causes in parasitic infections. Advances in Parasitology 25, 103133.CrossRefGoogle Scholar
Tatchell, R. J., Chimwani, D., Chirchir, S. J., Ongare, J. O., Mwangi, E., Rinkanya, F. and Whittington, D. (1986). A study of the justification for intensive tick control in Kenyan rangelands. Veterinary Record 119, 401403.CrossRefGoogle ScholarPubMed
Taylor, L. R. (1961). Aggregation, variance and the mean. Nature, London 189, 735.CrossRefGoogle Scholar
Teel, P. D., Marin, S., Grant, W. E. and Stuth, J. W. (1997). Simulation of host-parasite-landscape interactions: influence of season and habitat on cattle fever tick (Boophilus sp.) population dynamics in rotational grazing systems. Ecological Modelling 97, 8797.CrossRefGoogle Scholar
Uilenberg, G., Barré, N., Camus, E., Burridge, M. J. and Garris, G. I. (1984). Heartwater in the Caribbean. Preventive Veterinary Medicine 2, 255267.CrossRefGoogle Scholar
Utech, K. B. W., Wharton, R. H., Kerr, J. D. (1978). Resistance to Boophilus microplus in different breeds of cattle. Australian Journal of Agricultural Research 29, 885895.CrossRefGoogle Scholar
Walker, A. R. (2001). Age structure of a population of Ixodes ricinus in relation to its seasonal questing. Bulletin of Entomological Research 91, 6978.CrossRefGoogle ScholarPubMed
Walker, A. R. and Fletcher, J. D. (1985). Age grades and infection rates of Rhipicephalus appendiculatus to assess theileriosis challenge in the field. Bulletin of Entomological Research 75, 653660.CrossRefGoogle Scholar
Walker, A. R., Fletcher, J. D. and Todd, L. (1990). Cross resistance between instars of the tick Rhipicephalus appendiculatus fed on rabbits and cattle. Journal of Medical Entomology 27, 955961.CrossRefGoogle Scholar
Walker, A. R. and Lloyd, C. M. (1993). Experiments on the relationship between feeding of the tick Amblyomma variegatum and dermatophilosis skin disease in sheep. Journal of Medical Entomology 3, 136143.CrossRefGoogle Scholar
Walker, J. B., Keirans, J. E. and Horak, I. G. (2000). The Genus Rhipicephalus (Acari, Ixodidae): a Guide to the Brown Ticks of the World. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Watkins-Pitchford, H. (1910). Dipping and tick destroying agents. Natal Agricultural Journal 12, 436459.Google Scholar
Wharton, R. H., Harley, K. L. S., Wilkinson, P. R., Utech, K. B. and Kelley, B. M. (1969). A comparison of cattle tick control by pasture spelling, planned dipping, and tick-resistant cattle. Australian Journal of Agricultural Research 20, 783797.CrossRefGoogle Scholar
Wharton, R. H., Utech, K. B. W. and Turner, H. G. (1970). Resistance to the cattle tick, Boophilus microplus, in a herd of Australian Illawarra Shorthorn cattle: its assessment and heritability. Australian Journal of Agricultural Research 21, 163181.CrossRefGoogle Scholar
Young, A. S., Dolan, T. T., Morzaria, S. P., Mwakima, F. N., Norval, R. A. I., Scott, J., Sherriff, A. and Gettinby, G. (1996). Factors influencing infections in Rhipicephalus appendiculatus ticks fed on cattle infected with Theileria parva. Parasitology 113, 255266.CrossRefGoogle ScholarPubMed
Young, A. S., Groocock, C. M. and Kariuki, D. P. (1988). Integrated control of ticks and tick-borne diseases of cattle in Africa. Parasitology 96, 403432.CrossRefGoogle Scholar
Young, A. S., Leitch, B. L., Newson, R. M. and Cunningham, M. P. (1986). Maintenance of Theileria parva parva infection in an endemic area of Kenya. Parasitology 93, 916.CrossRefGoogle Scholar