Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T14:20:49.350Z Has data issue: false hasContentIssue false

Effects of temperature and host density on the snail-finding capacity of cercariae of Echinostoma caproni (Digenea: Echinostomatidae)

Published online by Cambridge University Press:  06 April 2009

D. Meyrowitsch
Affiliation:
Danish Bilharziasis Laboratory, Jaegersborg Alle 1D, DK-2920 Charlottenlund, Denmark
N. Ø. Christensen
Affiliation:
Danish Bilharziasis Laboratory, Jaegersborg Alle 1D, DK-2920 Charlottenlund, Denmark
O. Hindsbo
Affiliation:
Institute of Population Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark

Extract

The effect of temperature (19–36 °C) and snail host density (0.014–10 snails/1) on the snail-finding capacity of Echinostoma caproni cercariae is described. The initial swimming speed increased whereas the length of the infective period decreased with increasing temperature. The combined effect resulted in the E. caproni cercarial snail-finding capacity being temperature independent in the range 19 to 36 °C at a snail density of 0·014 snails/1. A moderate temperature dependency was, however, seen at a lower snail density. The cercarial snail-finding capacity was snail-host density dependent in the density range 0.014 to 1 snail/1. The findings from this study show that a relatively low and biologically realistic snail host density must be used in experimental studies if realistic estimates of the dynamics of cercarial transmission are to be obtained.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. M., Mercer, J. G., Wilson, R. A. & Carter, N. P. (1982). Transmission of Schistosoma mansoni from man to snail: experimental studies on miracidial survival and infectivity in relation to larval age, water temperature, host size and host age. Parasitology 85, 339–60.CrossRefGoogle Scholar
Chapman, H. D. & Wilson, R. A. (1973). The propulsion of the cercariae of Himasthla secunda (Nicoll) and Cryptocotyle lingua. Parasitology 77, 115.CrossRefGoogle Scholar
Christensen, N. Ø. (1979). Schistosoma mansoni: interference with cercarial host-finding by various aquatic organisms. Journal of Helminthology 53, 714.CrossRefGoogle ScholarPubMed
Christensen, N. Ø. (1980). A review of the influence of host and parasite-related factors and environmental conditions on the host-finding capacity of the trematode miracidium. Acta Tropica 37, 303–18.Google ScholarPubMed
Christensen, N. Ø., Nansen, P. & Frandsen, F. (1976). The influence of temperature on the infectivity of Fasciola hepatica miracidia to Lymnaea truncatula. Journal of Parasitology 62, 698701.CrossRefGoogle ScholarPubMed
Christensen, N. Ø., Frandsen, F. & Nansen, P. (1980). The interaction of some environmental factors influencing Schistosoma mansoni cercarial host-finding. Journal of Helminthology 54, 203–5.CrossRefGoogle ScholarPubMed
Christensen, N. Ø., Frandsen, F. & Roushdy, M. Z. (1980). The influence of environmental conditions and parasite-intermediate host-related factors on the transmission of Echinostoma liei. Zeitschrift für Parasitenkunde 63, 4763.CrossRefGoogle Scholar
Evans, N. A. (1982). Effect of copper and zinc upon the survival and infectivity of Echinoparyphium recurvatum cercariae. Parasitology 85, 195203.CrossRefGoogle Scholar
Evans, N. A. (1985). The influence of environmental temperature upon transmission of the cercariae of Echinostoma liei (Digenea: Echinostomatidae). Parasitology 90, 269–75.CrossRefGoogle Scholar
Evans, N. A. & Gordon, D. M. (1983). Experimental studies on the transmission dynamics of the cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 87, 167–74.CrossRefGoogle Scholar
Lawson, J. R. (1977). The biology of the cercaria and early schistosomulum of Schistosoma mansoni. D. Phil. thesis. University of York.Google Scholar
Lawson, J. R. & Wilson, R. A. (1980). The survival of the cercariae of Schistosoma mansoni in relation to water temperature and glycogen utilization. Parasitology 81, 337–48.CrossRefGoogle ScholarPubMed
Ryan, B. F., Joiner, B. L. & Ryan, T. A. (1985). MINITAB Handbook. PWS-Kent Publishing Company, Boston.Google Scholar
Shiff, C. J. (1969). Influence of light and depth on location of Bulinus (Physopsis) globosus by miracidia of Schistosoma haematobium. Journal of Parasitology 55, 108–10.CrossRefGoogle ScholarPubMed
Shiff, C. J. (1970). Host localization by miracidia of Schistosoma haematobium. Central African Journal of Tropical Medicine 16, 3740.Google Scholar
Shiff, C. J. (1974). Seasonal factors influencing the location of Bulinus (Physopsis) globosus by miracidia of Schistosoma haematobium in nature. Journal of Parasitology 60, 578–83.CrossRefGoogle ScholarPubMed
Sturrock, R. H. & Upatham, E. S. (1973). An investigation of the interactions of some factors influencing the infectivity of Schistosoma mansoni miracidia to Biomphalaria glabrata. International Journal for Parasitology 3, 3541.CrossRefGoogle ScholarPubMed
Takashi, T., Mori, K. & Shigeta, Y. (1961). Phototactic, thermotactic and geotactic responses of miracidia of Schistosoma japonicum. Japanese Journal of Parasitology 10, 686–91.Google Scholar
Valle, C., Pellegrino, J. & Gazzinelli, G. (1974). Influence of temperature on the backward propulsion speed of Schistosoma mansoni cercariae. Journal of Parasitology 60, 372–3.CrossRefGoogle ScholarPubMed
Wilson, R. A. & Taylor, S. L. (1978). The effect of variations in host and parasite density on the level of parasitization of Lymnaea truncatula by Fasciola hepatica. Parasitology 76, 91–8.CrossRefGoogle ScholarPubMed