Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T17:13:57.209Z Has data issue: false hasContentIssue false

Effects of phenothiazine neuroleptic drugs on the microtubular–membrane complex in bloodstream forms of Trypanosoma brucei

Published online by Cambridge University Press:  06 April 2009

A. M. Page
Affiliation:
Division of Biochemistry, School of Biological Science, Royal Holloway University of London, Egham, Surrey TW20 0EX
J. R. Lagnado
Affiliation:
Division of Biochemistry, School of Biological Science, Royal Holloway University of London, Egham, Surrey TW20 0EX

Summary

African trypanosomes are parasitic protozoa causing sleeping sickness in humans and related diseases in domestic animals against which no entirely satisfactory forms of chemotherapy are yet available. It was previously shown that related species of trypanosomes, as well as procyclic (insect) forms of Trypanosoma brucei are extremely sensitive to the action of phenothiazine neuroleptic drugs in vitro. In this work, we have carried out a more detailed investigation of the effects of thioridazine, one of the most potent neuroleptic phenothiazine drugs known, on the morphology of the infective bloodstream forms of T. brucei, with particular reference to the parasite's prominent pellicular membrane complex. Our data show that this drug induces rapid changes in cell shape that appear to involve some reorganization of the microtubular membrane skeleton, but does not affect the structural integrity of the microtubular complex. Another early consequence of drug action involved damage to nuclear and cytoplasmic membranes and the appearance of tubular arrays of coated membrane within the flagellar pocket. It was also revealed that the drug induces a rapid release of the variant-specific glycoprotein (VSG) which makes up the surface coat protecting bloodstream forms of the parasite against the host immune system. Our evidence suggests that this release of VSG involves cleavage of the protein's glycosyl-phosphatidylinositol (GPI) membrane anchor by endogenous GPI-specific phospholipase C, probably as a consequence of minor damage to the parasite plasma membrane induced by the drug.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allan, D. & Michell, F. H. (1975). Enhanced synthesis de novo of phosphatidylinositol in lymphocytes treated with cationic amphiphilic drugs. The Biochemical Journal 148, 471–8.Google Scholar
Anketell, M. C. (1986). Isolation and biochemical characterisation of cytoplasmic microtubules and other cytoskeletal proteins from Trypanosoma brucei. Dissertation, University of London.Google Scholar
Anketell, M. C. & Lagnado, J. R. (1983). Cytoskeletal proteins in bloodstream forms of Trypanosoma brucei. Transactions of the Biochemical Society 11, 783–4.CrossRefGoogle Scholar
Bowley, M., Cooling, J., Burditt, S. L. & Brindley, D. N. (1977). Effects of amphiphilic cationic drugs and inorganic cations on the activity of rat liver phosphatidate phosphatase. The Biochemical Journal 165, 447–54.Google Scholar
Brun, R. & Schonenberger, M. (1978). Cultivation and in vitro cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Tropica 36, 289–92.Google Scholar
Bülow, R., Griffiths, G., Webster, P., Stierhof, Y-D., Opperdoes, F. R. & Overath, P. (1989). Intracellular localization of the glucosyl-phosphatidylinositol-specific phospholipase C of Trypanosoma brucei. Journal of Cell Science 93, 233–40.Google Scholar
Bülow, R., Nonnengässer, C. & Overath, P. (1989). Release of the variant specific glycoprotein during differentiation of bloodstream forms of Trypanosoma brucei. Molecular and Biochemical Parasitology 32, 8592.CrossRefGoogle Scholar
Almeida, M.-L. Cardoso de & Turner, M. J. (1983). The membrane form of variant surface glycoproteins of Trypanosoma brucei. Nature, London 302, 349–52.Google Scholar
Carrington, M., Walter, D. & Webb, H. (1992). The biology of the glycosylphosphotidylinositol-specific phospholipase C of Trypanosoma brucei. In GPI Membrane Anchors (ed. Cardosa de Almeida, M. L.), pp. 246259. London: Academic Press.Google Scholar
Connor, C. C., Brady, R. C. & Brownstein, B. L. (1981). Trifluoperazine inhibits spreading and migration of cells in culture. Journal of Cell Physiology 108, 299307.Google Scholar
Cross, G. A. M. (1975). Identification, purification and properties of clone specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71, 393417.Google Scholar
Cross, G. A. M. (1984). Release and purification of Trypanosoma brucei variant specific glycoprotein. Journal of Cell Biochemistry 24, 7990.Google Scholar
Cross, G. A. M. (1990). Cellular and immunological aspects of antigenic variation in trypanosomes. Annual Review of Immunology 8, 83110.Google Scholar
Dolan, M. T., Reid, C. G. & Voorheis, H. P. (1986). Calcium ions initiate the selective depolymerization of the pellicular microtubules in bloodstream forms of Trypanosoma brucei. Journal of Cell Science 80, 123–40.Google Scholar
Ferguson, M. A. J. (1991). Lipid anchors on membrane proteins. Current Opinion in Structural Biology 1, 522–9.Google Scholar
Ferguson, M. A. J., Halder, K. & Cross, G. A. M. (1985). Trypanosoma brucei variant surface glycoprotein has a sn-l,2-dimyristyl glycerol membrane anchor at its COOH terminals. Journal of Biological Chemistry 260, 4963–8.Google Scholar
Ferguson, M. A. J, Homans, S. W., Dwek, R. A. & Radermacher, T. W. (1988). Glycosylphosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science 239, 753–9.Google Scholar
Ferguson, M. A. J. & Williams, A. F. (1988). Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annual Review of Biochemistry 57, 285320.Google Scholar
Ferrante, A. & Allison, A. C. (1983). Alternative pathway activation of complement by African trypanosomes lacking a glycoprotein coat. Parasite Immunology 5, 491–8.Google Scholar
Frevert, U. & Reinwald, E. (1988). Formation of filopodia in Trypanosoma congolense by crosslinking the variant surface antigen. Journal of Ultrastructure and Molecular Structure Research 99, 124–36.Google Scholar
Gietzen, K., Wurtrich, A. & Bader, H. (1981). R-24571: a new powerful inhibitor of red blood cell Ca2+- transport ATPase and of calmodulin-related functions. Biochemical and Biophysical Research Communications 101, 418–25.Google Scholar
Grab, D. J., Webster, P., Ito, S., Fish, W. R., Verjee, Y. & Lonsdale-Eccles, J. D. (1987). Subcellular localization of a variable surface glycoprotein phosphatidylinositol-specific phospholipase-C in African trypanosomes. Journal of Cell Biology 105, 737–46.Google Scholar
Hemphill, A., Lawson, D. & Seebeck, T. (1991). The cytoskeletal architecture of Trypanosoma brucei. Journal of Parasitology 77, 603–12.Google Scholar
Lanham, S. M. & Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology 28, 521–34.Google Scholar
Leli, V. & Hauser, G. (1986). Chlorpromazine induces accumulation of inositol phosphates in C6 glioma cells. Biochemical and Biophysical Research Communications 135, 455–72.Google Scholar
Lonsdale-Eccles, J. D. & Grab, J. (1987). Purification of African trypanosomes can cause biochemical changes in the parasites. Journal of Protozoology 34, 405–8.Google Scholar
Maziere, J. C., Maziere, C., Gardette, J., Routier, J. D, Wolf, C., Rainteau, D. & Polonovski, J. (1983). Effects of phenothiazines on low density lipoprotein metabolism in cultured human fibroblasts. FEBS Letters 162, 396–9.Google Scholar
Michel, R. H. (1975). Inositol phospholipids and cell surface receptor function. Biochimica et Biophysica Acta 415, 81147.Google Scholar
Murphy, J. A. (1982). Considerations, materials and procedures for specimen mounting prior to scanning electron microscopy. Scanning Electron Microscopy 1982 (2), 657–96.Google Scholar
Nelson, G. A., Andrews, M. L. & Karnovsky, M. J. (1983). Control of erythrocyte shape by calmodulin. Journal of Cell Science 96, 730–5.Google Scholar
Osborn, M. & Weber, K. (1980). Damage of cellular functions by trifluoperazine, a calmodulin-specific drug. Experimental Cell Research 130, 484–8.Google Scholar
Page, A. M., Lagnado, J. R., Ford, T. W. & Place, G. (1994). Calcium alginate encapsulation of small specimens for transmission electron microscopy. Journal of Microscopy 175, 166–70.CrossRefGoogle Scholar
Pearson, R. D., Manian, A. A., Marcus, J. L., Hall, D. & Hewlett, E. L. (1982). Lethal effect of phenothiazine neuroleptics on the pathogenic protozoan Leishmania donovani. Science 217, 369–71.Google Scholar
Rindisbacher, L., Hemphill, A. & Seebeck, T. (1993). A repetitive protein from Trypanosoma brucei which caps the microtubules at the posterior end of the cytoskeleton. Molecular and Biochemical Parasitology 58, 8396.CrossRefGoogle Scholar
Ruben, L., Strickler, J. E., Egwuago, C. & Patton, C. L. (1984). Structural and biological properties of calmodulin from African trypanosomes. In Molecular Biology of Host–Parasite Interactions (ed. Agabian, N. & Eisen, H.), pp. 267278. New York: Alan R. Liss Inc.Google Scholar
Schneider, A., Hemphill, A., Wyler, T. & Seebeck, T. (1988). Large microtubule-associated protein of T. brucei has tandemly repeated, near-identical sequences. Science 241, 459–62.Google Scholar
Seebeck, T. & Gehr, P. (1983). Trypanocidal effects of neuroleptic phenothiazines in Trypanosoma brucei. Molecular and Biochemical Parasitology 9, 197208.CrossRefGoogle Scholar
Seebeck, T., Hemphill, A. & Lawson, D. (1990). The cytoskeleton of trypanosomes. Parasitology Today 6, 4952.Google Scholar
Seeman, P. (1972). The membrane actions of anesthetics and tranquillizers. Pharmacological Review 24, 583655.Google Scholar
Sheetz, M. P. & Singer, S. J. (1974). Biological membranes as bilayer couples. A molecular mechanism of drug–erythrocyte interactions. Proceedings of the National Academy of Sciences, USA 71, 4457–61.CrossRefGoogle Scholar
Sherwin, T. & Gull, K. (1989). The cell division cycle of Trypanosoma brucei: timing of event markers and cytoskeletal modulations. Philosophical Transactions of the Royal Society of London, B 323, 573–88.Google Scholar
Téllez-Iñón, M., Ulloa, R. A, Torruella, M. & Torres, H. N. (1985). Calmodulin and Ca2+-dependent cyclic AMP phosphodiesterase activity in Trypanosoma cruzi. Molecular and Biochemical Parasitology 17, 143–53.CrossRefGoogle Scholar
Towbin, H., Staehelin, T. & Gordon, G. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 4350–4.Google Scholar
Turner, C. M. R. & Barry, J. D. (1989). High frequency of antigen ic variation in Trypanosoma brucei rhodesiense infections. Parasitology 99, 6775.Google Scholar
Vickerman, K. (1969). On the surface coat and flagellar adhesion in trypanosomes. Journal of Cell Science 5, 163–93.Google Scholar
Vickerman, K. (1978). Antigenic variation in trypanosomes. Nature, London 273, 613–17.Google Scholar
Vickerman, K. & Luckins, A. G. (1969). Localization of variable antigens in the surface coat of Trypanosoma brucei using ferritin-conjugated antibody. Nature, London 224, 1125–6.Google Scholar
Vickerman, K. & Preston, T. M. (1976). Comparative cell biology of the kinetoplastid flagellates. In Biology of the Kinetoplastida, Vol. 1 (ed. Lumsden, W. H. R. & Evans, D. A), pp. 35130. London: Academic Press.Google Scholar
Voorheis, H. P., Bowles, D. J. & Smith, G. A. (1982). Characteristics of the release of the surface coat protein from bloodstream forms of Trypanosoma brucei. Journal of Biological Chemistry 257, 2300–4.Google Scholar
Woods, A., Baines, A. J. & Gull, K. (1992). A high molecular mass phosphoprotein denned by a novel monoclonal antibody is closely associated with the intermicrotubule cross bridges in the Trypanosoma brucei cytoskeleton. Journal of Cell Science 103, 665–75.Google Scholar
Zamze, S. E., Ferguson, M. A. J., Collins, R., Dwek, R. A. & Radermacher, T. W. (1988). Characterisation of the cross-reacting determinant (CRD) of the glycosyl-phosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoprotein. European Journal of Biochemistry 176, 527–34.Google Scholar