Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-15T05:21:17.442Z Has data issue: false hasContentIssue false

Effects of interspecific competition on asexual proliferation and clonal genetic diversity in larval trematode infections of snails

Published online by Cambridge University Press:  28 April 2008

D. B. KEENEY*
Affiliation:
Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
S. BOESSENKOOL
Affiliation:
Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
T. M. KING
Affiliation:
Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
R. POULIN
Affiliation:
Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
*
*Corresponding author: Tel: +64 3 479 4039. Fax: +64 3 479 7584. E-mail: [email protected]

Summary

Interactions among different parasite species within hosts can be important factors shaping the evolution of parasite and host populations. Within snail hosts, antagonistic interactions among trematode species, such as competition and predation, can influence parasite abundance and diversity. In the present study we examined the strength of antagonistic interactions between 2 marine trematodes (Maritrema novaezealandensis and Philophthalmus sp.) in naturally infected Zeacumantus subcarinatus snails. We found approximately the same number of snails harbouring both species as would be expected by chance given the prevalence of each. However, snails infected with only M. novaezealandensis and snails with M. novaezealandensis and Philophthalmus sp. co-occurring were smaller than snails harbouring only Philophthalmus sp. In addition, the number of Philophthalmus sp. rediae was not affected by the presence of M. novaezealandensis sporocysts and the within-host clonal diversity of M. novaezealandensis was not influenced by the presence of Philophthalmus sp. Our results suggest that antagonistic interactions may not be a major force influencing the evolution of these trematodes and that characteristics such as host size and parasite infection longevity are shaping their abundance and population dynamics.

Type
Original Articles
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Curtis, L. A. (2002). Ecology of larval trematodes in three marine gastropods. Parasitology 124, S43S56.CrossRefGoogle ScholarPubMed
Esch, G. W., Curtis, L. A. and Barger, M. A. (2001). A perspective on the ecology of trematode communities in snails. Parasitology 123, S57S75.CrossRefGoogle ScholarPubMed
Fredensborg, B. L., Mouritsen, K. N. and Poulin, R. (2005). Impact of trematodes on host survival and population density in the intertidal gastropod Zeacumantus subcarinatus. Marine Ecology Progress Series 290, 109117.CrossRefGoogle Scholar
Gorbushin, A. M. and Levakin, I. A. (1999). The effect of trematode parthenitae on the growth of Onoba aculeus, Littorina saxatilis and L. obtusa (Gastropoda: Prosobranchia). Journal of the Marine Biological Association of the UK 79, 273279.CrossRefGoogle Scholar
Guo, S. W. and Thompson, E. A. (1992). Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48, 361372.CrossRefGoogle ScholarPubMed
Hay, K. B., Fredensborg, B. L. and Poulin, R. (2005). Trematode-induced alterations in shell shape of the mud snail Zeacumantus subcarinatus (Prosobranchia: Batillariidae). Journal of the Marine Biological Association of the UK 85, 989992.CrossRefGoogle Scholar
Hendrickson, M. A. and Curtis, L. A. (2002). Infrapopulation sizes of co-occurring trematodes in the snail Ilyanassa obsoleta. Journal of Parasitology 88, 884889.CrossRefGoogle ScholarPubMed
Holmes, J. C. and Price, P. W. (1986). Communities of parasites. In Community Ecology: Pattern and Process (ed. Anderson, D. J. and Kikkawa, J.), pp. 187213. Blackwell Scientific Publications, Oxford.Google Scholar
Huxham, M., Raffaelli, D. and Pike, A. (1993). The influence of Cryptocotyle lingua (Digenea: Platyhelminthes) infections on the survival and fecundity of Littorina littorea (Gastropoda: Prosobranchia): an ecological approach. Journal of Experimental Marine Biology and Ecology 168, 223238.CrossRefGoogle Scholar
Keeney, D. B., Bryan-Walker, K., King, T. M. and Poulin, R. (2008). Local variation of within-host clonal diversity coupled with genetic homogeneity in a marine trematode. Marine Biology 154, 183190.CrossRefGoogle Scholar
Keeney, D. B., Waters, J. M. and Poulin, R. (2006). Microsatellite loci for the New Zealand trematode Maritrema novaezealandensis. Molecular Ecology Notes 6, 10421044.CrossRefGoogle Scholar
Keeney, D. B., Waters, J. M. and Poulin, R. (2007). Clonal diversity of the marine trematode Maritrema novaezealandensis within intermediate hosts: the molecular ecology of parasite life cycles. Molecular Ecology 16, 431439.CrossRefGoogle ScholarPubMed
Kuris, A. M. (1990). Guild structure of larval trematodes in molluscan hosts: prevalence, dominance, and significance of competition. In Parasite Communities: Patterns and Processes (ed. Esch, G. W., Bush, A. O. and Aho, J.), pp. 69100. Chapman and Hall, London.CrossRefGoogle Scholar
Kuris, A. M. and Lafferty, K. D. (1994). Community structure: larval trematodes in snail hosts. Annual Review of Ecology and Systematics 25, 189217.CrossRefGoogle Scholar
Lafferty, K. D., Sammond, D. T. and Kuris, A. M. (1994). Analysis of larval trematode communities. Ecology 75, 22752285.CrossRefGoogle Scholar
Lagrue, C., McEwan, J., Poulin, R. and Keeney, D. B. (2007). Co-occurrences of parasite clones and altered host phenotype in a snail-trematode system. International Journal for Parasitology 37, 14591467.CrossRefGoogle Scholar
Lim, H. K. and Heyneman, D. (1972). Intramolluscan inter-trematode antagonism: a review of factors influencing the host-parasite system and its possible role in biological control. Advances in Parasitology 10, 191268.CrossRefGoogle ScholarPubMed
Martorelli, S. R., Fredensborg, B. L., Leung, T. L. F. and Poulin, R. (2008). Four trematode cercariae from the New Zealand intertidal snail Zeacumantus subcarinatus (Batillariidae). New Zealand Journal of Zoology 35, 7384.CrossRefGoogle Scholar
Martorelli, S. R., Fredensborg, B. L., Mouritsen, K. N. and Poulin, R. (2004). Description and proposed life cycle of Maritrema novaezealandensis n.sp. (Microphallidae) parasitic in red-billed gulls Larus novaehollandiae scopulinus from Otago Harbor, South Island, New Zealand. Journal of Parasitology 90, 272277.CrossRefGoogle ScholarPubMed
Peakall, R. and Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288295.CrossRefGoogle Scholar
Poulin, R. (2001). Interactions between species and the structure of helminth communities. Parasitology 122, S3S11.CrossRefGoogle ScholarPubMed
Poulin, R. (2007). Evolutionary Ecology of Parasites, 2nd Edn. Princeton University Press, Princeton, NJ, USA.CrossRefGoogle Scholar
Poulin, R. and Mouritsen, K. N. (2003). Large-scale determinants of trematode infections in intertidal gastropods. Marine Ecology Progress Series 254, 187198.CrossRefGoogle Scholar
Raymond, M. and Rousset, F. (1995). GENEPOP version 1.2: population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248249.CrossRefGoogle Scholar
Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43, 223225.CrossRefGoogle ScholarPubMed
Sorensen, R. E. and Minchella, D. J. (2001). Snail-trematode life history interactions: past trends and future directions. Parasitology 123, S3S18.CrossRefGoogle ScholarPubMed
Sousa, W. P. (1993). Interspecific antagonism and species coexistence in a diverse guild of larval trematode parasites. Ecological Monographs 63, 103128.CrossRefGoogle Scholar
Sousa, W. P. (1994). Patterns and processes in communities of helminth parasites. Trends in Ecology and Evolution 9, 5257.CrossRefGoogle Scholar
Sousa, W. P. and Gleason, M. (1989). Does parasitic infection compromise host survival under extreme environmental conditions? The case for Cerithidea californica (Gastropoda: Prosobranchia). Oecologia 80, 456464.CrossRefGoogle ScholarPubMed
Walker, J. C. (1979). Austrobilharzia terrigalensis: a schistosome dominant in interspecific interactions in the molluscan host. International Journal for Parasitology 9, 137140.CrossRefGoogle Scholar
Weir, B. S. and Cockerham, C. C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.Google ScholarPubMed