Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T11:03:34.408Z Has data issue: false hasContentIssue false

The effects of combining Artemisia annua and Curcuma longa ethanolic extracts in broilers challenged with infective oocysts of Eimeria acervulina and E. maxima

Published online by Cambridge University Press:  22 October 2013

GUSTAVO F. D. ALMEIDA*
Affiliation:
Department of Agroecology, Faculty of Sciences and Technology, Aarhus University, Research Centre Foulum, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
STIG M. THAMSBORG
Affiliation:
Danish Centre for Experimental Parasitology, Faculty of Life Sciences, University of Copenhagen, Dyrlægevej 100, DK-1870 Frederiksberg C, Denmark
ALDA M. B. N. MADEIRA
Affiliation:
Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374. São Paulo, SP, Brazil
JORGE F. S. FERREIRA
Affiliation:
USDA-ARS, US Salinity Laboratory, 450 W. Big Springs Rd., Riverside, CA 92507-4617, USA
PEDRO M. MAGALHÃES
Affiliation:
Chemical, Biological and Agricultural Pluridisciplinary Research Centre (CPQBA), University of Campinas – UNICAMP, P.O. Box 6171, BR-13081-970 Campinas, SP, Brazil
LUIZ C. DEMATTÊ FILHO
Affiliation:
Department of Economy and Rural Sociology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Avenida Pádua Dias 11, Piracicaba, SP, Brazil
KLAUS HORSTED
Affiliation:
Department of Agroecology, Faculty of Sciences and Technology, Aarhus University, Research Centre Foulum, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
JOHN E. HERMANSEN
Affiliation:
Department of Agroecology, Faculty of Sciences and Technology, Aarhus University, Research Centre Foulum, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
*
* Corresponding author: Department of Agroecology, Faculty of Sciences and Technology, Aarhus University. Research Centre Foulum, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark. E-mail: [email protected]; [email protected]

Summary

Due to an increasing demand for natural products to control coccidiosis in broilers, we investigated the effects of supplementing a combination of ethanolic extracts of Artemisia annua and Curcuma longa in drinking water. Three different dosages of this herbal mixture were compared with a negative control (uninfected), a positive control (infected and untreated), chemical coccidiostats (nicarbazin+narazin and, later, salinomycin), vaccination, and a product based on oregano. Differences in performance (weight gain, feed intake, and feed conversion rate), mortality, gross intestinal lesions and oocyst excretion were investigated. Broilers given chemical coccidiostats performed better than all other groups. Broilers given the two highest dosages of the herbal mixture had intermediate lesion scores caused by Eimeria acervulina, which was higher than in broilers given coccidiostats, but less than in broilers given vaccination, oregano and in negative controls. There was a trend for lower mortality (P = 0·08) in the later stage of the growing period (23–43 days) in broilers given the highest dosage of herbal mixture compared with broilers given chemical coccidiostats. In conclusion, the delivery strategy of the herbal extracts is easy to implement at farm level, but further studies on dose levels and modes of action are needed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbas, R. Z., Colwell, D. D. and Gilleard, J. (2012). Botanicals: an alternative approach for the control of avian coccidiosis. World's Poultry Science Journal 68, 203215. doi: 10.1017/S0043933912000268.Google Scholar
Akhtara, M., Haia, A., Awaisa, M. M., Iqbala, Z., Muhammadb, F., Haqc, A. U. and Anward, M. I. (2012). Immunostimulatory and protective effects of Aloe vera against coccidiosis in industrial broiler chickens. Veterinary Parasitology 186, 170177.Google Scholar
Allen, P. C., Lydon, J. and Danforth, H. D. (1997). Effects of components of Artemisia annua on coccidia infections in chickens. Poultry Science 76, 11561163.Google Scholar
Allen, P. C., Danforth, H. D. and Augustine, P. C. (1998). Dietary modulation of avian coccidiosis. International Journal for Parasitology 8, 11311140.Google Scholar
Almeida, G. F d., Horsted, K., Thamsborg, S. M., Kyvsgaard, N. C., Ferreira, J. F. S. and Hermansen, J. E. (2012). Use of Artemisia annua as a natural coccidiostat in free-range broilers and its effects on infection dynamics and performance. Veterinary Parasitology 186, 178187.Google Scholar
Anonymous (1990). Diagnosis of Coccidiosis in Chickens. Janssen Pharmaceutica, Beerse, Belgium.Google Scholar
Anwar, M. I., Akhtar, M., Hussain, I., Muhammad, F. and Haq, A. U. (2008). Effects of local gametocyte and livacox vaccines on live body weight gain and lymphoid organs in chickens. Pakistan Veterinary Journal 28, 136138.Google Scholar
Arab, H. A., Rahbari, S., Rassouli, A., Moslemi, M. H. and Khosravirad, F. D. A. (2006). Determination of artemisinin in Artemisia sieberi and anticoccidial effects of the plant extract in broiler chickens. Tropical Animal Health and Production 38, 497503.Google Scholar
Chapman, H. D. (1993). Resistance to anticoccidial drugs in fowl. Parasitology Today 9, 159162.Google Scholar
Conney, A. H., Lysz, T., Ferraro, T., Abidi, T. F., Manchand, P. S., Laskin, J. D. and Huang, M. T. (1991). Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic metabolism in mouse skin. Advances in Enzyme Regulation 31, 385396.Google Scholar
Conway, D. P., Sasai, A. K., Gaafar, B. S. M. and Smothers, C. D. (2003). Effects of different levels of oocyst inocula of Eimeria acervulina, E. tenella, and E. maxima on plasma constituents, packed cell volume, lesion scores, and performance in chickens. Avian Diseases 37, 118123.Google Scholar
Crane, M. S., Murray, P. K., Gnozzio, M. J. and MacDonald, T. T. (1988). Passive protection of chickens against Eimeria tenella infection by monoclonal antibody. Infection and Immunity 56, 972976.Google Scholar
Cui, L., Miao, J. and Cui, L. (2007). Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species. Antimicrobial Agents and Chemotherapy 51, 488494.Google Scholar
Daugschies, A., Gässlein, U. and Rommel, M. (1998). Comparative efficacy of anticoccidials under the conditions of commercial broiler production and in battery trials. Veterinary Parasitology 76, 163171.Google Scholar
Eckert, J., Taylor, M., Catchpole, J., Licois, D., Coudert, P. and Bucklar, H. (1995). Morphological characteristics of oocysts. In Biotechnology. Guidelines of Techniques in Coccidiosis Research (ed. Eckert, J., Braun, R., Shirley, M. and Coudert, P.), pp. 103119. COST 89/820. Office for Official Publications of the European Communities, Luxembourg.Google Scholar
Ferreira, J. F. S. and Gonzales, J. M. (2009). Analysis of underivatized artemisinin and related sesquiterpene lactones by high-performance liquid chromatography with ultraviolet detection. Phytochemical Analysis 2, 9197.Google Scholar
Ferreira, J. F. S., Peaden, P. and Keiser, J. (2011). In vitro trematocidal effects of crude alcohol-ic extracts of Artemisia annua, A. absinthium, Asimina triloba, and Fumaria officinalis . Parasitology Research 109, 15851592.Google Scholar
Hafeez, M. A., Akhtar, M., Javed, M. T. and Haq, A. U. (2007). Maternal immunization by egg propagated gametocyte vaccine to control Eimeria tenella infections in newly hatched chicks. Parasitology Research 100, 11391141.Google Scholar
Henken, A. M., Ploeger, H. W., Graat, E. A. M. and Carpenter, T. E. (1994). Description of a simulation model for the population dynamics of Eimeria acervulina infection in broilers. Parasitology 108, 503512.Google Scholar
Huang, M. T., Newmark, H. L. and Frenkel, K. (1997). Inhibitory effects of curcumin on tumorigenesis in mice. Journal of Cellular Biochemistry Supplement 27, 2634.Google Scholar
Isacchi, B., Bergonzi, M. C., Grazioso, M., Righeschi, C., Pietretti, A., Severini, C. and Bilia, A. R. (2012). Artemisinin and artemisinin plus curcumin liposomal formulations: enhanced antimalarial efficacy against Plasmodium berghei-infected mice. European Journal of Pharmaceutics and Biopharmaceutics 80, 528534.Google Scholar
Johnson, J. and Reid, W. M. (1970). Anticoccidial drugs lesion scoring techniques in battery and floor-pen experiments with chickens. Experimental Parasitology 28, 3036.Google Scholar
Jung, M., Lee, K., Kim, H. and Park, M. (2004). Recent advances in artemisinin and its derivatives as antimalarial and antitumor agents. Current Medical Chemistry 11, 12651284.Google Scholar
Lillehoj, H. S. and Trout, J. M. (1993). Coccidia: a review of recent advances on immunity and vaccine development. Avian Pathology 22, 331.Google Scholar
Martin, A., Danforth, H., Barta, J. and Fernando, M. (1997). Analysis of immunological cross-protection and sensitivities to anticoccidial drugs among five geographical and temporal strains of Eimeria maxima . International Journal for Parasitology 27, 527533.Google Scholar
Mathis, G. F. (2005). Reasons for field problems with E. maxima: E. acervulina vs E. maxima. In Proceeding of the IXth International Coccidiosis Conference, Foz do Iguacú, Brazil. 19–23 Sept 2005.Google Scholar
McDougald, L. R., Fuller, L. and Mattiello, R. (1997). A survey of coccidian on 43 poultry farms in Argentina. Avian Diseases 41, 923929.Google Scholar
Naidoo, V., McGaw, L. J., Bisschop, S. P. R., Duncan, N. and Eloff, J. N. (2008). The value of plant extracts with antioxidant activity in attenuating coccidiosis in broiler chickens. Veterinary Parasitology 153, 214219.Google Scholar
Nandakumar, D. N., Nagaraj, V. A., Vathsala, P. G., Rangarajan, P. and Padmanaban, G. (2006). Curcumin-artemisinin combination therapy for malaria. Antimicrobial Agents and Chemotherapy 50, 18591860.Google Scholar
Orengo, J., Buendía, A. J., Ruiz-Ibáñez, M. R., Madrid, J., Del Río, L., Catalá-Gregori, P., García, V. and Hernández, F. (2012). Evaluating the efficacy of cinnamaldehyde and Echinacea purpurea plant extract in broilers against Eimeria acervulina . Veterinary Parasitology 185, 158163.Google Scholar
Oviedo-Rondón, E. O., Clemente-Hernández, S., Salvador, F., Williams, P., Losa, R. and Stephen, F. (2006). Essential oils on mixed coccidia vaccination and infection in broilers. International Journal of Poultry Science 5, 723730.Google Scholar
Padmanaban, G., Nagaraj, V. A. and Rangarajan, P. N. (2012). Artemisinin-based combination with curcumin adds a new dimension to malaria therapy. Current Science 102, 704711.Google Scholar
Pinard-van der Laan, M.-H., Monvoisin, J.-L., Pery, P., Hamet, N. and Thomas, M. (1998). Comparison of outbred lines of chickens for resistance to experimental infection with coccidiosis (Eimeria tenella). Poultry Science 77, 185191.Google Scholar
Quinn, G. P. and Keough, M. J. (2002). Experimental Design and Data Analysis for Biologists. 6th printing, 2007. Cambridge University Press, Cambridge, UK.Google Scholar
Rao, C. V., Rivenson, A., Simi, B. and Reddy, B. S. (1995). Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Research 55, 259266.Google Scholar
Reddy, R. C., Vathsala, P. G., Keshamouni, V. G., Padmanaban, G. and Rangarajan, P. N. (2005). Curcumin for malaria therapy. Biochemical and Biophysical Research Communications 326, 472474.Google Scholar
Rosen, G. D. (1995). Antibacterials in poultry and pig nutrition. In Biotechnology in Animal Feeds and Animal Feeding (ed. Wallace, R. J. and Chesson, A.), pp. 143172. VCH Verlagsgesellschaft GmbH, Weinheim, Germany.Google Scholar
SAS Institute (2000). SAS Online Doc®, Version 9.2. SAS Institute, Cary, NC.Google Scholar
Shahiduzzaman, M., Dyachenko, V., Khalafalla, R. E., Desouky, A. Y. and Daugschies, A. (2009). Effects of curcumin on Cryptosporidium parvum in vitro . Parasitology Research 105, 11551161.Google Scholar
Shirley, M. W., Smith, A. L. and Tomley, F. M. (2005). The biology of avian Eimeria with an emphasis on their control by vaccination. Advanced Parasitology 60, 285330.Google Scholar
Souza, C. R. A. and Glória, M. B. A. (1998). Chemical analysis of turmeric from Minas Gerais, Brazil and comparison of methods for flavour free oleoresin. Brazilian Archives of Biology and Technology 41, 218224.Google Scholar
Subramanian, M., Sreejayan Rao, M. N., Devasagayam, T. P. and Singh, B. B. (1994). Diminution of singlet oxygen-induced DNA damage by curcumin and related antioxidants. Mutation Research 311, 249255.Google Scholar
Velkers, F. C., Swinkels, W. J. C., Rebel, J. M. J., Bouma, A., Daemen, A. J. J. M., Klinkenberg, D., Boersma, W. J. A., Stegeman, J. A., de Jong, M. C. M. and Heesterbeek, J. A. P. (2010). Effect of Eimeria acervulina infection history on the immune response and transmission in broilers. Veterinary Parasitology 173, 184192.Google Scholar
Waldenstedt, L. (2003). Effect of vaccination against coccidiosis in combination with an antibacterial oregano (Origanum vulgare) compound in organic broiler production. Acta Agriculturae Scandinavica 53, 101109.CrossRefGoogle Scholar
Williams, R. B. (1999). A compartmentalized model for the estimation of the cost of coccidiosis to the world's chicken production industry. International Journal for Parasitology 8, 12091229.Google Scholar
Williams, R. B. (2002). Fifty years of anticoccidial vaccines for poultry, 1952–2002. Avian Disease 46, 755802.Google Scholar