Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-29T14:52:53.716Z Has data issue: false hasContentIssue false

Effect of temperature on survival and infectivity of Echinostoma trivolvis cercariae: a test of the energy limitation hypothesis

Published online by Cambridge University Press:  06 April 2009

J. A. Pechenik
Affiliation:
Biology Department, Tufts University, Medford, Massachusetts 02155, USA
B. Fried
Affiliation:
Department of Biology, Lafayette College, Easton, Pennsylvania 18042, USA

Summary

Trematode cercariae typically become unable to successfully infect a host many hours before they die. We examined the hypothesis that both time to 50% mortality and time to loss of infective capacity are controlled to the same degree by rates of energy expenditure, by determining the relative effects of temperature on both parameters. Infective capacity was assessed by exposing Echinostoma trivolvis cercariae of different ages to a suitable second intermediate host (the gastropod Biomphalaria glabrata) and counting 1–2 days later the number of metacercarial cysts formed. Temperature had a remarkably similar effect on time to 50% mortality and loss of infective capacity, supporting the hypothesis that both absolute and functional cercarial life-spans are limited by the rates at which energy stores are utilized.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adolf, E. (1931). Body size as a factor in the metamorphosis of tadpoles. Biological Bulletin 61, 376–86.CrossRefGoogle Scholar
Alford, R. A. & Harris, R. N. (1988). Effects of larval growth history on anuran metamorphosis. American Naturalist 131, 91106.CrossRefGoogle Scholar
Anderson, J. W. & Fried, D. (1987). Experimental infection of Physa heterostropha, Helisoma trivolvis, and Biomphalaria glabrata (Gastropoda) with Echinostoma revolutum (Trematoda) cercariae. Journal of Parasitology 73, 4954.CrossRefGoogle ScholarPubMed
Anderson, R. M. & Whitfield, P. J. (1975). Survival characteristics of the free-living cercarial population of the ectoparasitic digenean Transversotrema patialense (Soparker, 1924). Parasitology 70, 295310.CrossRefGoogle Scholar
Beaver, P. C. (1937). Experimental studies on Echinostoma revolutum (Froelich), a fluke from birds and mammals. Illinois Biological Monographs 15, 196.Google Scholar
Blankespoor, H. D. (1977). Notes on the biology of Plagiarchis noblei Park, 1936 (Trematoda: Plagiorchiidae). Proceedings of the Helminthological Society of Washington 44, 4450.Google Scholar
Evans, N. A. (1985). The influence of environmental temperature upon transmission of the cercariae of Echinostoma liei (Digenea: Echinostomatidae). Parasitology 90, 269–75.CrossRefGoogle Scholar
Evans, N. A. & Gordon, D. M. (1983). Experimental studies on the transmission dynamics of cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 87, 167–74.CrossRefGoogle Scholar
Fried, B. & Emili, S. (1988). Excystation in vitro of Echinostoma liei and E. revolutum (Trematoda) metacercariae. Journal of Parasitology 74, 98102.CrossRefGoogle Scholar
Fried, B., Idris, N. & Ohsawa, T. (1995). Experimental infection of juvenile Biomphalaria glabrata with cercariae of Echinostoma trivolvis. Journal of Parasitology 81, 308–10.CrossRefGoogle ScholarPubMed
Fried, B. & King, B. (1989). Attraction of Echinostoma revolutum cercariae to Biomphalaria glabrata dialysate. Journal of Parasitology 75, 55–7.CrossRefGoogle Scholar
Ginetsinskaya, T. A. (1988). Trematodes, Their Life-Cycles, Biology and Evolution. New Delhi: Amerind Publishing Company, Pvt.Google Scholar
Huffman, J. E. & Fried, B. (1990). Echinostoma and echinostomiasis. Advances in Parasitology 29, 215–69.CrossRefGoogle ScholarPubMed
Jaeckle, W. B. (1994). Rates of energy consumption and acquisition by lecithotrophic larvae of Bugula neritina (Bryozoa: Cheilostomata). Marine Biology 119, 517–23.CrossRefGoogle Scholar
Laughlin, R., French, W. & Guard, H. E. (1983). Acute and sublethal toxicity of tributyltin oxide (TBTO) and its putative environmental product, tributyltin sulfide (TBTS) to zoeal mud crabs, Rhithropanopeus harrisii. Water, Air, and Soil Pollution 20, 6979.CrossRefGoogle Scholar
Lawson, J. R. & Wilson, R. A. (1980). The survival of the cercariae of Schistosoma monsoni in relation to water temperature and glycogen utilization. Parasitology 81, 337–48.CrossRefGoogle Scholar
Leips, J. & Travis, J. (1994). Metamorphic responses to changing food levels in two species of hylid frogs. Ecology 75, 1345–56.CrossRefGoogle Scholar
Lo, C.-T. & Cross, J. H. (1975). Observations on the host-parasite relations between Echinostoma revolutum and lymnaeid snails. Chinese Journal of Microbiology 8, 241–52.Google ScholarPubMed
Lowenberger, C. A. & Rau, M. E. (1994). Plogiorchis elegans: emergence, longevity and infectivity of cercariae, and host behavioural modifications during cercarial emergence. Parasitology 109, 6572.CrossRefGoogle ScholarPubMed
Lucas, M. I., Walker, G., Holland, D. L. & Crisp, D. J. (1979). An energy budget for the free-swimming and metamorphosing larvae of Balanus balanoides (Crustacea: Cirripedia). Marine Biology 55, 221–9.CrossRefGoogle Scholar
Meyrowitsch, D., Christensen, N. O. & Hindsbo, O. (1991). Effects of temperature and host density on the snail-finding capacity of cercariae of Echinostoma caproni (Digenea: Echinostomatidae). Parasitology 102, 391–5.CrossRefGoogle ScholarPubMed
Miller, G. C. & Edney, J. M. (1958). The infectivity of Schistosomatium douthitti (Cort) cercariae of known age. Proceedings of the Louisiana Academy of Science 20, 5560.Google Scholar
Pechenik, J. A. (1990). Delayed metamorphosis by larvae of benthic marine invertebrates: does it occur? Is there a price to pay? Ophelia 32, 6394.CrossRefGoogle Scholar
Pechenik, J. A., Eyster, L. S., Widdows, J. & Bayne, B. L. (1990). The influence of food concentration and temperature on growth and morphological differentiation of blue mussel Mytilus edulis L. larvae. Journal of Experimental Marine Biology and Ecology 136, 4764.CrossRefGoogle Scholar
Rea, J. G. & Irwin, S. W. B. (1992). The effects of age, temperature, light quantity and wavelength on the swimming behaviour of the cercariae of Cryptocotyle lingua (Digenea: Heterophyidae). Parasitology 105, 131–7.CrossRefGoogle ScholarPubMed
Sebens, K. P. (1983). Settlement and metamorphosis of a temperate soft-coral larva (Alcyonium siderium Verrill): induction by crustose algae. Biological Bulletin 165, 286304.CrossRefGoogle Scholar
Smith-Gill, S. J. & Berven, K. A. (1979). Predicting amphibian metamorphosis. American Naturalist 113, 563–85.CrossRefGoogle Scholar
Ulmer, M. J. (1970). Notes on rearing of snails in the laboratory. In Experiments and Techniques in Parasitology (ed. Maclnnis, A. J. & Voge, M.), pp. 143144. San Francisco, W. H. Freeman and Company.Google Scholar
Wilbur, H. M. & Collins, J. P. (1973). Ecological aspects of amphibian metamorphosis. Science 182, 1305–14.CrossRefGoogle ScholarPubMed
Woollacott, R. M., Pechenik, J. A. & Imbalzano, K. M. (1989). Effects of the duration of larval swimming period on early colony development in Bugula stolonifera (Bryozoa: Cheilostomata). Marine Biology 102, 5763.CrossRefGoogle Scholar
Zimmerman, K. M. & Pechenik, J. A. (1991). How do temperature and salinity affect relative rates of growth, morphological differentiation, and time to metamorphic competence in larvae of the marine gastropod Crepidula planai Biological Bulletin 180, 372–86.CrossRefGoogle ScholarPubMed