Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T21:54:58.697Z Has data issue: false hasContentIssue false

The effect of dietary carbohydrates with different digestibility on the populations of Oesophagostomum dentatum in the intestinal tract of pigs

Published online by Cambridge University Press:  28 November 2001

S. PETKEVIČIUS
Affiliation:
Danish Centre for Experimental Parasitology, Department of Veterinary Microbiology, Royal Veterinary and Agricultural University, Ridebanevej 3, DK-1870 Frederiksberg C, Denmark Lithuanian Veterinary Institute, LT-4230 Kaišiadorys, Lithuania
K. E. BACH KNUDSEN
Affiliation:
Department of Animal Nutrition and Physiology, Danish Institute of Agricultural Sciences, Research Centre Foulum, P.O. Box 50, DK-8830 Tjele, Denmark
P. NANSEN
Affiliation:
Danish Centre for Experimental Parasitology, Department of Veterinary Microbiology, Royal Veterinary and Agricultural University, Ridebanevej 3, DK-1870 Frederiksberg C, Denmark
K. D. MURRELL
Affiliation:
Danish Centre for Experimental Parasitology, Department of Veterinary Microbiology, Royal Veterinary and Agricultural University, Ridebanevej 3, DK-1870 Frederiksberg C, Denmark

Abstract

An experiment was undertaken to study the effect of dietary carbohydrates with different digestibility on the populations of Oesophagostomum dentatum in the intestinal tract of pigs. Sixty-four worm-free pigs from a specific pathogen-free farm were randomly divided into 8 equal groups. The animals in 4 groups were assigned to a diet with partially undegradable carbohydrates (diet 1), while the pigs in the 4 remaining groups were given a diet with fermentable carbohydrates (diet 2). Diet 1 was comprised of barley flour, oat husk meal, soybean meal, vitamins and minerals and diet 2 of barley flour, inulin and sugar beet fibre, soybean meal, vitamins and minerals. The pigs in 6 of the groups (n = 48) were inoculated with 6000 infective larvae of O. dentatum. To determine O. dentatum populations at the early stage of infection, 16 pigs were slaughtered 3 weeks p.i., while the remaining 4 groups continued on the diets for a further 9 weeks after which they were slaughtered. In a diet cross-over experiment 6 weeks after inoculation, 8 pigs changed from diet 1 to diet 2 (diet 1>diet 2), and 8 pigs from diet 2 to diet 1 (diet 2>diet 1). The results showed that partially undegradable carbohydrates provided favourable conditions not only for parasite establishment and sustainability, but also for already established O. dentatum infection while, in contrast, the diet composed of highly degradable carbohydrates decreased worm establishment, size and female fecundity. The implications for pastured pigs or pigs fed different complex carbohydrate diets is discussed.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ALLEN, A. (1981). Structure and function of gastrointestinal mucus. In Physiology of the Gastrointestinal Tract (ed. JOHNSON, L. R.), pp. 617639. Raven Press Ltd, New York.
ANDERSON, N., ARMOUR, J., EADIE, R. M., JARETT, W. F. H. & JENNINGS, F. W. (1966). Experimental Ostertagia ostertagi infections in calves: results of single infections with five graded dose levels of larvae. American Journal of Veterinary Research 27, 12591265.Google Scholar
ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS (1990). Official methods of analysis. In Association of Official Analytical Chemists, Washington D.C.Google Scholar
BACH KNUDSEN, K. E. (1997). Carbohydrates and lignin of plant materials used in animal production. Animal Feed Science and Technology 67, 319338.CrossRefGoogle Scholar
BACH KNUDSEN, K. E. & HESSOV, I. (1995). Recovery of inulin from Jerusalem artichoke (Helianthus tuberosus L.) in the small intestine of man. British Journal of Nutrition 74, 101113.Google Scholar
BARRETT, J. (1988). The application of control analysis to helminth pathways. Parasitology 97, 355362.CrossRefGoogle Scholar
BJøRN, H., ROEPSTORFF, A. & NANSEN, P. (1996). A possible influence of diet composition on the establishment of nematodes in the pig. Veterinary Parasitology 63, 167171.CrossRefGoogle Scholar
BOWN, M. D., POPPI, D. P. & SYKES, A. R. (1991). Nitrogen transactions along the digestive tract of lambs concurrently infected with Trichostrongylus colubriformis and Ostertagia circumcincta. British Journal of Nutrition 66, 237249.CrossRefGoogle Scholar
BRUNSGAARD, G. (1998). Effects of cereal type and feed particle size on morphological characteristics, epithelial cell proliferation, and lectin binding patterns in the large intestine of pigs. Journal of Animal Science 76, 27872798.CrossRefGoogle Scholar
CHRISTENSEN, C. M. (1998). Population biological studies of Oesophagostomum dentatum and Oesophagostomum quadrispinulatum in pigs, Dr. Sc. thesis, pp. 1245. Royal Veterinary and Agricultural University, Copenhagen, Denmark.Google Scholar
CHRISTENSEN, C. M., BARNES, E. H. & NANSEN, P. (1997). Experimental Oesophagostomum dentatum infections in the pig: worm populations at regular intervals during trickle infections with three levels of larvae. Parasitology 115, 545552.CrossRefGoogle Scholar
CHRISTENSEN, C. M., BARNES, E. H., NANSEN, P., ROEPSTORFF, A. & SLOTVED, H.-C. (1995). Experimental Oesophagostomum dentatum infection in the pig: worm populations resulting from single infections with three doses of larvae. International Journal for Parasitology 25, 14911498.CrossRefGoogle Scholar
COYNE, M. J., SMITH, G. & JOHNSTONE, C. (1991). A study of the mortality and fecundity of Haemonchus contortus in sheep following experimental infections. International Journal for Parasitology 21, 847853.CrossRefGoogle Scholar
CROMPTON, D. W. T. (1991). Nutritional interactions between host and parasites. In Parasite–Host Associations. Coexistence or Conflict? (ed. TOFT, C. A. AESCHLIMANN, A. & BOLIS, L.), pp. 228257. Oxford University Press, Oxford.
GOODEY, T. (1926). Some stages in the development of Oesophagostomum dentatum from the pig. Journal of Helminthology 4, 191198.CrossRefGoogle Scholar
HERBERT, I. V., LEAN, I. J. & NICKSON, E. W. (1969). Dietary factors and the production of Oesophagostomum spp. ova in breeding pigs. Veterinary Record 84, 569570.Google Scholar
HOLMES, P. H. (1993). Interactions between parasites and animal nutrition: the veterinary consequences. Proceedings of the Nutrition Society 52, 133140.CrossRefGoogle Scholar
JACOBS, D. E. & DUNN, A. M. (1968). The epidemiology of porcine oesophagostomosis. Nordisk Veterinær-Medicin 20, 258266.Google Scholar
JENSEN, M. T., COX, R. P. & JENSEN, B. B. (1995). Microbial production of skatole in the hind gut of pigs given different diets and its relation to skatole deposition in the back fat. Animal Science 61, 293304.CrossRefGoogle Scholar
JOHANSEN, M. V., BøGH, H. O., GIVER, H., ERIKSEN, L., NANSEN, P., STEPHENSON, L. & KNUDSEN, K. E. B. (1997). Schistosoma japonicum and Trichuris suis infections in pigs fed diets with high and low protein. Parasitology 115, 257264.CrossRefGoogle Scholar
MARUYAMA, H. & NAWA, Y. (1997). Strongyloides venezuelensis: adhesion of adult worms to culture vessels by orally secreted mucosubstances. Experimental Parasitology 85, 1015.CrossRefGoogle Scholar
NANSEN, P. & ROEPSTORFF, A. (1999). Parasitic helminths of the pig: factors influencing transmission and infection levels. International Journal for Parasitology 29, 877891.CrossRefGoogle Scholar
NESHEIM, M. C. (1984). Some experimental approaches to the study of nutrition and parasitic infection. Federation Proceedings 43, 235238.Google Scholar
PEARCE, G. B. (1999). Interactions between dietary fibre, endo-parasites and Lawsonia intracellularis bacteria in grower-finisher pigs. Veterinary Parasitology 87, 5161.CrossRefGoogle Scholar
PETKEVIČIUS, S., BACH KNUDSEN, K. E., NANSEN, P., ROEPSTORFF, A., SKJøTH, F. & JENSEN, K. (1997). The impact of diets varying in carbohydrates resistant to endogenous enzymes and lignin on populations of Ascaris suum and Oesophagostomum dentatum in pigs. Parasitology 114, 555568.Google Scholar
PETKEVIČIUS, S., BJøRN, H., ROEPSTORFF, A., NANSEN, P., BACH KNUDSEN, K. E., BARNES, E. H. & JENSEN, K. (1995). The effect of two types of diet on populations of Ascaris suum and Oesophagostomum dentatum in experimentally infected pigs. Parasitology 111, 395402.CrossRefGoogle Scholar
PETKEVIČIUS, S., LARSEN, M., BACH KNUDSEN, K. E., NANSEN, P., GRøNVOLD, J., HENRIKSEN, S. AA. & WOLSTRUP, J. (1998). The effect of different diets on the development of Oesophagostomum dentatum larvae in faecal cultures with or without added spores of the nematode-destroying fungus, Duddingtonia flagrans. Helminthologia 8, 111116.Google Scholar
PETKEVIČIUS, S., NANSEN, P., BACH KNUDSEN, K. E. & SKJøTH, F. (1999). The effect of increasing levels in insoluble dietary fibre on the establishment and persistence of Oesophagostomum dentatum in pigs. Parasite 6, 1726.CrossRefGoogle Scholar
POPPI, D. P., MACRAE, J. C., BREWER, A. & COOP, E. L. (1986). Nitrogen transactions in the digestive tract of lambs exposed to the intestinal parasite Trichostrongylus colubriformis. British Journal of Nutrition 55, 593602.CrossRefGoogle Scholar
QUIGLEY, M. E. & KELLY, S. M. (1995). Structure, function, and metabolism of host mucus glycoproteins. In Human Colonic Bacteria: Role in Nutrition, Physiology, and Pathology (ed. GIBSON, G. R. & MACFARLANE, G. T.), pp. 175199. CRC Press, Boca Raton, FL, USA.
ROEPSTORFF, A., BJøRN, H. & NANSEN, P. (1987). Resistance of Oesophagostomum spp. in pigs to pyrantel citrate. Veterinary Parasitology 24, 229239.CrossRefGoogle Scholar
ROEPSTORFF, A. & NANSEN, P. (1998). Epidemiology, Diagnosis and Control of Helminth Parasites of Swine. FAO Animal Health Manual N3. FAO, Rome, Italy.
SCHÜRCH, A. F., LOYD, L. E. & CRAMPTON, E. W. (1950). The use of chromic oxide as an index for determination the digestibility of a diet. Journal of Nutrition 50, 629636.Google Scholar
SLOTVED, H.-C., BARNES, E. H., BJøRN, H., CHRISTENSEN, C. M., ERIKSEN, L., ROEPSTORFF, A. & NANSEN, P. (1996). Recovery of Oesophagostomum dentatum from pigs by isolation of parasites migrating from large intestinal contents embedded in agar-gel. Veterinary Parasitology 63, 237245.CrossRefGoogle Scholar
SOLOMONS, N. W. & SCOTT, M. E. (1994). Nutritional status of host populations influence parasitic infections. In Parasitic and Infectious Diseases, Epidemiology and Ecology (ed. SCOTT, M. E. & SMITH, G.), pp. 101114. Academic Press, San Diego, USA.
STEPHENSON, L. S. (1987). Schistosomiasis. In Impact of Helminth Infections on Human Nutrition, pp. 4788. Taylor & Francis, New York.Google Scholar
STEWART, T. B. & GASBARRE, L. C. (1989). The veterinary importance of nodular worms (Oesophagostomum spp.). Parasitology Today 5, 209213.CrossRefGoogle Scholar
STOLDT, W. (1952). Vorschlag zur Vereinheitlinchung der Fettbestimmung in Lebensmitteln. Fette, Seifen, Anstrichmittel 54, 206207.CrossRefGoogle Scholar
THAMSBORG, S. M., ROEPSTORFF, A. & LARSEN, M. (1999). Integrated and biological control of parasites in organic and conventional production systems. Veterinary Parasitology 84, 169186.CrossRefGoogle Scholar
VON BRAND, T. (1979). Nutrition. In Biochemistry and Physiology of Endoparasites, pp. 2879. Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar