Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T10:41:27.188Z Has data issue: false hasContentIssue false

Ecological, morphological and genetic characterization of sympatric Haemonchus spp. parasites of domestic ruminants in Mauritania

Published online by Cambridge University Press:  06 April 2009

P. Jacquiet
Affiliation:
Centre National d' Elevage et de Recherches Vétérinaires, BP 167, Nouakchott, République hlamique de Mauritanie
J. F. Humbert
Affiliation:
INRA, Centre de Tours, Station de Pathologie Aviaire et de Parasitologie, 37380 Nouzilly, France
A. M. Comes
Affiliation:
Departamento de Parasitología, Facultad de Farmacía, Universidad de Valencia, 46100 Burjassot-Valencia, España
J. Cabaret
Affiliation:
INRA, Centre de Tours, Station de Pathologie Aviaire et de Parasitologie, 37380 Nouzilly, France
A. Thiam
Affiliation:
Centre National d' Elevage et de Recherches Vétérinaires, BP 167, Nouakchott, République hlamique de Mauritanie
D. Cheikh
Affiliation:
Centre National d' Elevage et de Recherches Vétérinaires, BP 167, Nouakchott, République hlamique de Mauritanie

Summary

The 4 species of ruminants (dromedary, zebu cattle, sheep and goat) in arid areas of Mauritania harboured Haemonchus spp. as the most frequent internal parasite. This was a rare situation where the 3 putative species, H. longistipes (dromedary), H. placet (zebu cattle) and H. contortus (sheep and goat) occurred sympatrically. The study was undertaken on hosts slaughtered at the Nouakchott abattoir, on the basis of monthly collection of worms. The environment was very unfavourable to H. placei and unfavourable to H. contortus, as intensity of infection remained low throughout the year, whereas infection in the dromedary was 10 to 20-fold higher. The survival strategies during the long, dry season were different: the surviving stages were either 4th-stage larvae in digesta (dromedaries), 4th-stage larvae either in digesta or mucosae (cattle), or 4th-stage larvae in mucosae and few adults (sheep and goats). The prolificacy of female worms, indicative of the potential to contaminate pastures, was similar for all Haemonchus spp. in the rainy season. H. longistipes behave differently during the pre-rainy season as no increase of prolificacy could be demonstrated as observed in the other species. Traits of vulvar morphology are considered as markers of ecological adaptation and were studied. The knobbed and smooth female morphs (in equal proportions) were the most frequent in H. longistipes, the knobbed morph out-numbered the other morphs in H. placei, and all 3 morphs were present in sheep and goats with the linguiform form being predominant. Genetic characterization of the 3 species was performed by means of Random Amplified Polymorphic DNA (RAPD). Three groups were obtained from analysis of these data: 1 group with individuals of H. contortus, 1 group with individuals of H. placei, and 1 group with individuals of H. longistipes. This indicated that, although the 3 species were valid, H. contortus and H. placei were more similar. Intraspecific variability was 2-fold higher in H. contortus than in the 2 other species. The ecological, morphological and genetical studies showed that H. longistipes, H. placei and H. contortus could be arranged in increasing order of variability.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arzoun, I. H., Hussein, H. S. & Hussein, M. F. (1984). The prevalence and pathogenesis of naturally-occurring Haemonchus longistipes infection in Sudanese camels. Journal of Comparative Pathology 94, 169–74.CrossRefGoogle ScholarPubMed
Bandi, C., la Rosa, G., Comincini, S., Damiani, G. & Pozio, E. (1993). Random Amplified Polymorphic DNA technique for the identification of Trichinella species. Parasitology 107, 419–24.CrossRefGoogle ScholarPubMed
Barral, V., This, P., Imbert-Establet, D., Combes, C. & Delseny, M. (1993). Genetic variability and evolution of the Schistosoma genome analysed by using Random Amplified Polymorphic DNA markers. Molecular and Biochemical Parasitology 59, 211–22.CrossRefGoogle ScholarPubMed
Cabaret, J. (1976). Note sur le parasitisme dû aux nématodes et aux coccidies chez les espèces domestiques dans la région de Kaédi (Mauritanie). Revue d' Elevage et de Médecine vétérinaire des Pays tropicaux 29, 221–6.Google Scholar
Cabaret, J. (1984). Seasonal changes in the abomasal nematodes of naturally infected ewes in Moulay-Bouazza (Morocco). Veterinary Parasitology 15, 4755.CrossRefGoogle ScholarPubMed
Chiejina, S. N., Fakae, B. B. & Eze, B. D. (1989). Development and survival of freeliving stages of gastro-intestinal nematodes of sheep and goats on pasture in the Nigerian derived savanna. Veterinary Research and Communications 13, 103–12.CrossRefGoogle Scholar
Daskalov, P. B. (1972). Haemonchus contortus: factors determining the polymorphism of linguiform females. Experimental Parasitology 32, 364–8.CrossRefGoogle ScholarPubMed
Dias, Neto E., Pereira De Souza, C., Rollinson, D., Katz, N., Pena, D. D. J. & Simpson, J. G. (1993). The Random Amplified Polymorphic DNA allows the identification of strains and species of schistosome. Molecular and Biochemical Parasitology 57, 83–8.CrossRefGoogle Scholar
Dupouy-Camet, J., Robert, P., Guillou, J. P., Vallet, C., Perret, C. & Soule, C. (1994). Identification of Trichinella isolates with Random Amplified Polymorphic DNA. Parasitology Research 80, 358–60.CrossRefGoogle ScholarPubMed
Faye-Grandjean, I. (1987). Parasitoses gastro-intestinales du mouton et de la chèvre en République Islamique de Mauritanie. Thèse de Doctorat Vétérinaire, Université de Berne.Google Scholar
Felsenstein, G. (1993). Phylogeny Inference Package, Version 3.5c. Department of Genetics, University of Washington, Seattle.Google Scholar
Giangaspero, M., Bahhady, F. A., Orita, G. & Gruner, L. (1992). Summer-arrested development of abomasal trichostrongylids in Awassi sheep in semi-arid areas of North-West Syria. Parasitology Research 78, 594–7.CrossRefGoogle ScholarPubMed
Gibbons, L. M. (1979). Revision of the genus Haemonchus Cobb, 1898 (Nematoda: Trichostrongylidae). Systematic Parasitology 1, 324.CrossRefGoogle Scholar
Humbert, J. F. & Cabaret, J. (1994). Use of the Random Amplified Polymorphic DNA (RAPD) for identification of ruminant trichostrongylid nematodes. Parasitology Research (in the Press).Google Scholar
Jacquiet, P., Cabaret, J., Colas, F., Dia, M. L., Cheikh, D. & Thiam, A. (1992). Helminths of sheep and goats in desert areas of South-West Mauritania (Trarza). Veterinary Research and Communications 16, 437–44.CrossRefGoogle ScholarPubMed
Kaufmann, J. & Pfister, K. (1990). The seasonal epidemiology of gastro-intestinal nematodes in N'Dama cattle in The Gambia. Veterinary Parasitology 37, 4554.CrossRefGoogle Scholar
Kaukas, A., Dias, Neto E., Simpson, J. G., Southgate, V. R. & Rollinson, D. (1994). A phylogenetic analysis of Schistosoma haematobium group species based on Randomly Amplified Polymorphic DNA. International Journal of Parasitology 24, 285–90.CrossRefGoogle ScholarPubMed
le Jambre, L. F. (1977). Genetics of vulvar morph types in Haemonchus contortus: Haemonchus contortus cayugensis from the Finger Lakes region of New York. International Journal for Parasitology 7, 914.CrossRefGoogle ScholarPubMed
le Jambre, L. F. (1979). Hybridization studies of Haemonchus contortus (Rudolphi, 1803) and Haemonchus placei (Place, 1893) (Nematoda: Trichostrongylidae). International Journal for Parasitology 9, 455–63.CrossRefGoogle Scholar
le Jambre, L. F. & Royal, W. M. (1977). Genetics of vulvar morph types in Haemonchus contortus: Haemonchus contortus from the northern Tablelands of New South Wales. International Journal for Parasitology 7, 481–7.CrossRefGoogle Scholar
le Jambre, L. F. & Whitlock, J. H. (1968). Seasonal fluctuation in linguiform morphs of Haemonchus contortus cayugensis. Journal of Parasitology 54, 827–30.CrossRefGoogle Scholar
Legendre, L. & Legendre, P. (1979). Ecologie Numérique, Tome 2: La Structure des Données écologiques. Paris: Masson Editeur, et Les Presses de l' Université du Québec.Google Scholar
McKenna, P. B. (1971). Morphological evidence of subspeciation in Haemonchus contortus from New Zealand sheep: the vulvar flap formula. New Zealand Journal of Agricultural Research 14, 902–14.CrossRefGoogle Scholar
Ogunsusi, R. A. & Eysker, M. (1979). Inhibited development of Trichostrongylids of sheep in Northern Nigeria. Research in Veterinary Sciences 26, 108–10.CrossRefGoogle ScholarPubMed
Richard, D. (1989). L'haemonchose du dromadaire. Revue d 'Elevage et de Médecine vétérinaire des Pays tropicaux 42, 4553.Google Scholar
Roberts, F. H. S., Turner, H. N. & Mckevett, M. (1954). On the specific distinctness of the ovine and bovine ‘strains’ of Haemonchus contortus (Rudolphi) Cobb (Nematoda: Trichostrongylidae). Australian Journal of Zoology 2, 275–95.CrossRefGoogle Scholar
Rose, J. H. (1966). The vulvar flap formula of Haemonchus contortus from sheep in South-East England. Research in Veterinary Sciences 7, 480–3.CrossRefGoogle Scholar
Siles-Lucas, M., Cuesta-Bandera, C. & Cesar-Benito, M. (1993). Random Amplified Polymorphic DNA technique for speciation studies of Echinococcus granulosus. Parasitology Research 79, 343–5.CrossRefGoogle ScholarPubMed
Stat-Itcf, (1988). Manuel de l 'Utilisateur. Paris: Institut des Céréales et des Fourrages.Google Scholar
Tager-Kagan, P. (1984). Résultats d'enquêtes sur les helminthiases du dromadaire dans le département de Zinder (Rép. du Niger); leur ávolution dans l'année–moyens de lutte. Revue d 'Elevage et de Médecine vétérinaire des Pays tropicaux 37, 1925.Google Scholar
Vercruysse, J. (1984). The seasonal prevalence of inhibited development of Haemonchus contortus in sheep in Senegal. Veterinary Parasitology 17, 159–63.CrossRefGoogle Scholar