Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T00:53:54.790Z Has data issue: false hasContentIssue false

The diversity, distribution and host-parasite associations of trypanosomes in Western Australian wildlife

Published online by Cambridge University Press:  07 August 2009

S. AVERIS
Affiliation:
WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections and the State Agricultural Biotechnology Centre, School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Western Australia 6150, Australia
R. C. A. THOMPSON
Affiliation:
WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections and the State Agricultural Biotechnology Centre, School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Western Australia 6150, Australia
A. J. LYMBERY
Affiliation:
WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections and the State Agricultural Biotechnology Centre, School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Western Australia 6150, Australia
A. F. WAYNE
Affiliation:
Science Division, Department of Environment and Conservation, Manjimup, WA 6258, Australia
K. D. MORRIS
Affiliation:
Science Division, Department of Environment and Conservation, Wildlife Place, Woodvale WA 6026, Australia
A. SMITH*
Affiliation:
WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections and the State Agricultural Biotechnology Centre, School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Western Australia 6150, Australia
*
*Corresponding author: WHO Collaborating Centre for the Molecular Epidemiology of Parasitic Infections and the State Agricultural Biotechnology Centre, School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Western Australia 6150, Australia. Tel: 08 9965 0908. E-mail: [email protected]

Summary

Little is known regarding the diversity, distribution or host-parasite associations of Trypanosoma spp. in Australian wildlife. Here we report on an investigation based on divergence of the 18S rRNA gene of trypanosomes isolated from a range of hosts and varied geographical locations. A total of 371 individuals representing 19 species of native animals from 14 different locations were screened. In total, 32 individuals from 9 different species tested positive for the parasite. Phylogenetic analysis revealed considerable parasite diversity with no clear geographical distribution and no evidence of host specificity. In general, it appears that Australian Trypanosoma spp. are widespread, with several genotypes appearing in multiple host species and in varied locations including both mainland areas and offshore islands. Some host species were found to be susceptible to multiple genotypes, but no individuals were infected with more than a single isolate.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albon, S. D., Stien, A., Irvine, R. J., Langvatn, R., Ropstad, E. and Halvorsen, O. (2002). The role of parasites in the dynamics of a reindeer population. Proceedings of the Royal Society of London, B 269, 16251632.CrossRefGoogle ScholarPubMed
Arrea, G. C., Carmona, M. C., Bermudez, O. M. G. and Abrahams, E. (1998). Effect of Trypanosoma lewisi (Kinetoplastida: Trypanosomatidae) on the infection of white rats with Toxoplasma gondii (Eucoccidia: Sarcocystidae) oocysts. Revista De Biologia Tropical 46, 11211123.Google Scholar
Bancroft, T. L. (1888). Note on Haematomonas in rat's blood. Proceedings of the Royal Society of Queensland 5, 3132.CrossRefGoogle Scholar
Brown, W. H. (1914). A note on the pathogenicity of Trypanosoma lewisi. The Journal of Experimental Medicine 19, 406410.CrossRefGoogle ScholarPubMed
Brown, W. H. (1915). Concerning changes in the biological properties of Trypanosoma lewisi produced by experimental means, with special reference top virulence. The Journal of Experimental Medicine 21, 345364.CrossRefGoogle Scholar
Brown, M. J. F., Loosli, R. and Schmid-Hempel, P. (2000). Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 91, 421427.CrossRefGoogle Scholar
Brun, R., Hecker, H. and Lun, Z. R. (1998). Trypanosoma evansi and T. equiperdum: Distribution, biology, treatment and phylogenetic relationship (A review). Veterinary Parasitology 79, 95–107.CrossRefGoogle Scholar
Burthe, S. J., Telfer, S., Begon, M., Bennett, M., Smith, A. and Lambin, X. (2008). Cowpox virus infection in natural field vole, Microtus agrestis, populations: significant negative impacts on survival. Journal of Animal Ecology 77, 110119.CrossRefGoogle ScholarPubMed
Clark, P. and Spencer, P. B. S. (2006). Haematological characteristics of two wild populations of quokka (Setonix brachyurus). Comparative Clinical Pathology 15, 8286.CrossRefGoogle Scholar
Cox, F. E. G. (2001). Concomitant infections, parasites and immune response. Parasitology 122, S23S38.CrossRefGoogle Scholar
Davey, C., Sinclair, A. R. E., Pech, R. P., Arthur, A. D., Krebs, C. J., Newsome, A. E., Hik, D., Molsher, R. and Allcock, K. (2006). Do exotic vertebrates structure the biota of Australia? An experimental test in New South Wales. Ecosystems 9, 992–1008.CrossRefGoogle Scholar
Department of Environment and Conservation (2008). Diagnosis of recent woylie declines in southwestern Australia: progress report of the Woylie Conservation Research Project (Final Draft). 1314. Western Australian Government Department of Environment and Conservation, Perth, Western Australia.Google Scholar
Dortch, C. E. and Morse, K. (1984). Prehistoric stone artefacts on some offshore islands in Western Australia. Australian Archaeology 19, 3147.CrossRefGoogle Scholar
Hamilton, P. B., Gibson, W. C. and Stevens, J. R. (2007). Patterns of co-evolution between trypanosomes and their hosts deduced from ribosomal RNA and protein-coding gene phylogenies. Molecular Phylogenetics and Evolution 44, 1525.CrossRefGoogle ScholarPubMed
Hamilton, P. B., Stevens, J. R., Gidley, J., Holz, P. and Gibson, W. C. (2005 a). A new lineage of trypanosomes from Australian vertebrates and terrestrial bloodsucking leeches (Haemadipsidae). International Journal for Parasitology 35, 431443.CrossRefGoogle ScholarPubMed
Hamilton, P. B., Stevens, J. R., Holz, P., Boag, B., Cooke, B. and Gibson, W. C. (2005 b). The inadvertent introduction into Australia of Trypanosoma nabiasi, the trypanosome of the European rabbit (Oryctolagus cuniculus), and its potential for biocontrol. Molecular Ecology 14, 31673175.CrossRefGoogle ScholarPubMed
Hawlena, H., Bashary, D., Abramsky, Z. and Krasnov, B. (2007). Benefits, costs and constraints on anti-parasitic grooming in adult and juvenile rodents. Ethology 113, 394402.CrossRefGoogle Scholar
Higgins, D., Thompson, J., Gibson, T., Thompson, J. D., Higgins, D. J. and Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Research 22, 46734680.Google Scholar
Hoare, C. A. (1972). The Trypanosomes of Mammals: a Zoological Monograph. Blackwell Scientific Publications, Oxford, UK.Google Scholar
Hudson, P. J., Dobson, A. P. and Newborn, D. (1992). Do parasites make prey vulnerable to predation-red grouse and parasites. Journal of Animal Ecology 61, 681692.CrossRefGoogle Scholar
Jakes, K. A., O'Donoghue, P. J. and Adlard, R. D. (2001). Phylogenetic relationships of Trypanosoma chelodina and Trypanosoma binneyi from Australian tortoises and platypuses inferred from small subunit rRNA analysis. Parasitology 123, 483487.CrossRefGoogle Scholar
Mackerras, M. J. (1959). The haematozoa of Australian mammals. Australian Journal of Zoology 7, 105132.CrossRefGoogle Scholar
Mackerras, M. J. (1961). The haematozoa of Australian reptiles. Australian Journal of Zoology 9, 61–122.CrossRefGoogle Scholar
Mackerras, M. J. and Mackerras, I. M. (1960). The haematozoa of Australian birds. Australian Journal of Zoology 8, 226260.CrossRefGoogle Scholar
Mackerras, M. J. and Mackerras, I. M. (1961). The haematozoa of Australian frogs and fish. Australian Journal of Zoology 9, 123140.CrossRefGoogle Scholar
McCallum, H. and Dobson, A. (2002). Disease, habitat fragmentation and conservation. Proceedings of the Royal Society of London, B 269, 20412049.CrossRefGoogle ScholarPubMed
Møller, A. P. and Nielsen, J. T. (2007). Malaria and risk of predation: a comparative study of birds. Ecology 88, 871881.CrossRefGoogle ScholarPubMed
Newey, S. and Thirgood, S. (2004). Parasite-mediated reduction in fecundity of mountain hares. Proceedings of the Royal Society of London, B 271, S413S415.CrossRefGoogle ScholarPubMed
Noyes, H. A., Stevens, J. R., Teixeira, M., Phelan, J. and Holz, P. (1999). A nested PCR for the ssrRNA gene detects Trypanosoma binneyi in the platypus and Trypanosoma sp. in wombats and kangaroos in Australia. International Journal for Parasitology 29, 331339.CrossRefGoogle ScholarPubMed
Pedersen, A. B., Jones, K. E., Nunn, C. L. and Altizer, S. (2007). Infectious diseases and extinction risk in wild mammals. Conservation Biology 21, 12691279.CrossRefGoogle ScholarPubMed
Pedersen, A. B. and Grieves, T. J. (2008). The interaction of parasites and resources cause crashes in a wild mouse population. Journal of Animal Ecology 77, 370377.CrossRefGoogle Scholar
Pickering, J. and Norris, C. A. (1996). New evidence concerning the extinction of the endemic murid Rattus macleri from Christmas Island, Indian Ocean. Australian Mammalogy 19, 1925.CrossRefGoogle Scholar
Polley, L. and Thompson, R. C. A. (2009). Parasite zoonoses and climate change: molecular tools for shifting boundaries. Trends in Parasitology 25, 285291.CrossRefGoogle ScholarPubMed
Rózsa, L., Reiczigel, J. and Majoros, G. (2000). Quantifying parasites in samples of hosts. Journal of Parasitology 86, 228232.CrossRefGoogle ScholarPubMed
Smith, A., Telfer, S., Burthe, S., Bennett, M. and Begon, M. (2005). Trypanosomes, fleas and field voles: ecological dynamics of a host-vector-parasite interaction. Parasitology 131, 355365.CrossRefGoogle ScholarPubMed
Smith, A., Clark, P., Averis, S., Lymbery, A. J., Wayne, A. F., Morris, K. D. and Thompson, R. C. A. (2008). Trypanosomes in a declining species of threatened Australian marsupial, the brush-tailed bettong Bettongia penicillata (Marsupialia: Potoroidae). Parasitology 135, 13291335.CrossRefGoogle Scholar
Stevens, J. R., Noyes, H. A., Dover, G. A. and Gibson, W. C. (1999). The ancient and divergent origins of the human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology 118, 107116.CrossRefGoogle ScholarPubMed
Stevens, J. R., Noyes, H. A., Schofield, C. J. and Gibson, W. C. (2001). The molecular evolution of Trypanosomatidae. Advances in Parasitology 48, 156.CrossRefGoogle ScholarPubMed
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Thekisoe, O. M., Honda, T., Fujita, H., Battsetseg, B., Hatta, T., Fujisaki, K., Sugimoto, C. and Inoue, N. (2007). A trypanosome sp. isolated from naturally infected Haemaphysalis hystricis ticks in Kagoshima Prefecture, Japan. Parasitology 134, 967974.CrossRefGoogle Scholar
Tompkins, D. M. and Begon, M. (1999). Parasites can regulate wildlife populations. Parasitology Today 15, 311313.CrossRefGoogle ScholarPubMed
Thompson, R. C. A., Kutz, S. J. and Smith, A. (2009). Parasite zoonoses and wildlife: emerging issues. International Journal of Environmental Research and Public Health 6, 678693.CrossRefGoogle ScholarPubMed
Thompson, R. C. A., Owen, I. L., Puana, I., Banks, D., Davis, T. M. E. and Reid, S. A. (2003). Parasites and biosecurity: the example of Australia. Trends in Parasitology 19, 410416.CrossRefGoogle Scholar
Wyatt, K. B., Campos, P. F., Gilbert, M. T. P., Kolokotronis, S. O., Hynes, W. H., DeSalle, R., Daszak, P., MacPhee, R. D. E. and Greenwood, A. D. (2008). Historic mammalian extinction on Christmas Island (Indian Ocean) correlates with introduced infectious disease. PLoS ONE 3, 19.CrossRefGoogle ScholarPubMed