Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T13:13:37.089Z Has data issue: false hasContentIssue false

The development of Theileria = Cytauxzoon taurotragi (Martin and Brocklesby, 1960) from eland in its tick vector Rhipicephalus appendiculatus

Published online by Cambridge University Press:  06 April 2009

A. S. Young
Affiliation:
Veterinary Research Department, Kenya Agricultural Research Institute, Muguga, P.O. Box 32, Kikuyu, Kenya
J. G. Grootenhuis
Affiliation:
Veterinary Research Department, Kenya Agricultural Research Institute, Muguga, P.O. Box 32, Kikuyu, Kenya
B. L. Leitch
Affiliation:
Veterinary Research Department, Kenya Agricultural Research Institute, Muguga, P.O. Box 32, Kikuyu, Kenya
E. Schein
Affiliation:
Veterinary Research Department, Kenya Agricultural Research Institute, Muguga, P.O. Box 32, Kikuyu, Kenya

Summary

The sexual cycle of Theileria taurotragi was identified in the gut lumen of replete Rhipicephalus appendiculatus nymphs maintained at 28°C which had fed on eland with rising parasitaemias. Macro- and microgametes developed from ring-form piroplasms within 24 h after repletion. The microgamonts were elongate with 2 or more lateral projections. The nuclei of the microgamonts divided into 4 and the microgamonts differentiated into 4 thread-like microgametes each with a central nucleus. Round macrogametes developed at the same time and stages indicative of the fusion of the macro- and microgametes were observed after 48 h. The resultant zygotes were detected in the gut wall cells by day 4, many being rounded and vacuolated with a peripheral nucleus. By day 7 the zygote cytoplasm became dense and they lay in clusters still within the cells. Binucleate zygotes were observed at this stage. The zygotes increased in size and by day 12 began to transform into kinetes by invagination. By the time the nymphs moulted into adults (about day 14), the kinete straightened to a broad anterior end and a tapering posterior with a mean length of 22·1 μm. Kinetes were detected in the haemolymph by day 16. By day 20 the kinetes had penetrated the salivary gland acinar cells where they underwent schizogony until the infected acinar cells were filled with multinucleated sporoblasts. The nuclei of the infected acinar cells became greatly enlarged soon after penetration of the kinete. Division of the sporoblast nuclei was stimulated by feeding of the adult ticks. From the 2nd day of attachment of the ticks to rabbits the sporoblasts underwent a process of schizogony to produce cytomeres. Each nucleus of the cytomere divided to produce several small nuclei which differentiated into uninucleated sporozoites.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, K. P., (1960). Notes on the rearing of Rhipicephalus appendiculatus and their infection with Theileria parva for experimental transmission. Bulletin of Epizootic Diseases of Africa 8, 3343.Google Scholar
Beale, G. H., Carter, R., & Walliker, D., (1978). Genetics. In Rodent Malaria (ed. Killick-Kendrick, R. and Peters, W.), pp. 213–45. London: Academic Press.Google Scholar
Binnington, K. C., (1978). Sequential changes in salivary gland structure during attachment and feeding of the cattle tick Boophilus microplus. International Journal for Parasitology 8, 97115.CrossRefGoogle ScholarPubMed
Blewett, D. A., & Branagan, D., (1973). The demonstration of Theileria parva infection in intact Rhipicephalus appendiculatus salivary glands. Tropical Animal Health and Production 5, 22–4.CrossRefGoogle Scholar
Brocklesby, D. W., (1962). Cytauxzoon taurotragi, Martin and Brocklesby 1960, a piroplasm of eland (Taurotragus oryx pattersonianus Lydekker 1906). Research in Veterinary Science 3, 334–44.CrossRefGoogle Scholar
Cowdry, E. W., & Ham, A. W., (1932). Studies on East Coast Fever. I. The life cycle of the parasite in ticks. Parasitology 24, 149.CrossRefGoogle Scholar
Gonder, R., (1911). Die Entwicklung von Theileria parva der Erreger des Kästenfieber der Rinder in Afrika. Archiv fär Protistenkunde 22, 170–8.Google Scholar
Grootenhuis, J. G., Young, A. S., Dolan, T. T., & Stagg, D. A., (1979). The characteristics of Theileria species (eland) infections in eland and cattle. Research in Veterinary Science 27, 5968.CrossRefGoogle ScholarPubMed
Grootenhuis, J. G., Young, A. S., Kanhai, G. K., & Paling, R. W., (1977). Experimental transmission of a Theileria species between eland. Journal of Parasitology 63, 1127–9.CrossRefGoogle ScholarPubMed
Koch, R., (1906). Beiträge zur Entwicklungsgeschichte der Piroplasm. Zeitschriftfür Hygiene und Infektionskrankheiten 54, 19.CrossRefGoogle Scholar
Levine, N. D., (1971). Taxonomy of the piroplasms. Transactions of the American Microscopical Society 90, 233.CrossRefGoogle Scholar
Martin, H. W., Barnett, S. F., & Vidler, B. O., (1964). Cyclic development and longevity of Theileria parva in the tick, Rhipicephalus appendiculatus. Experimental Parasitology 15, 527–55.CrossRefGoogle ScholarPubMed
Martin, H., & Brocklesby, D. W., (1960). A new parasite of eland. Veterinary Record 72, 331–2.Google Scholar
Mehlhorn, H., & Schein, E., (1976). Elektronenmikroskopische Untersuchungen an Entwicklungsstadien von Theileria parva (Theiler 1904) im Darm der Übertragerzecke, Hyalomma anatolicum excavatum (Koch, 1844). Tropenmedizin und Parasitologie 27, 182–91.Google ScholarPubMed
Mehlhorn, H., Schein, E., & Warnecke, M., (1978). Electron microscopic studies on the development of kinetes of Theileria parva Theiler, 1904, in the gut of the vector ticks Rhipicephalus appendiculatus Neumann, 1901. Acta Tropica 35, 123–36.Google ScholarPubMed
Mehlhorn, H., Weber, G., Schein, E., & Büscher, G., (1975). Elektronenmikroskopische Untersuchungen an Entwicklungsstadien von Theileria annulata (Dschunkowsky and Luhs, 1904) im Darm und in der Hämolymphe von Hyalomma anatolicum excavatum (Koch, 1844). Zeitschrift für Parasitenkunde 48, 137–50.CrossRefGoogle Scholar
Nuttall, G. H. F., & Hindle, E., (1913). Conditions influencing the transmission of East Coast Fever. Parasitology 7, 321–32.Google Scholar
Purnell, R. E., & Joyner, L. P., (1968). The development of Theileria parva in the salivary glands of the tick Rhipicephalus appendiculatus. Parasitology 58, 725–32.CrossRefGoogle ScholarPubMed
Purnell, R. E., Ledger, M. A., Omwoyo, P. L., Payne, R. C., & Peirce, M. A., (1974). East Coast Fever: correlation between morphology and infectivity of Theileria parva developing in its tick vector. Parasitology 66, 539–44.CrossRefGoogle Scholar
Purnell, R. E., Young, A. S., Payne, R. C., & Mwangi, J. M., (1975). Development of Theileria mutans (Aitong) in the tick Amblyomma variegatum compared to that of T. parva (Muguga) in Rhipicephalus appendiculatus. Journal of Parasitology 61, 725–9.CrossRefGoogle Scholar
Radley, D. E., (1978). Chemoprophylactic immunization against East Coast Fever. In Tick-borne Diseases and Their Vectors, (ed. Wilde, J. K. H.), pp. 324–39. Edinburgh University: Centre for Tropical Veterinary Medicine.Google Scholar
Radley, D. E., Brown, C. D. G., Burridge, M. J., Cunningham, M. P., Peirce, M. A., & Purnell, R. E., (1974). East Coast Fever: quantitative studies of Theileria parva in cattle. Experimental Parasitology 36, 278–87.CrossRefGoogle ScholarPubMed
Radley, D. E., Young, A. S., Grootenhuis, J. G., Cunningham, M. P., Dolan, T. T., & Morzaria, S. P., (1979). Further studies on the immunization of cattle against Theileria lawrencei by infection and chemoprophylaxis. Veterinary Parasitology 5, 117–28.CrossRefGoogle Scholar
Reichenow, E., (1935). Übertragungsweise und Entwicklung der Piroplasmen. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. I. Abteilung Originate 135, 108–19.Google Scholar
Reichenow, E., (1937). Über die Entwicklung von Theileria parva, der Erreger des Küstenfiebers der Rinder, in Rhipicephalus appendiculatus. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. I. Abteilung Originals 140, 223–6.Google Scholar
Reichenow, E., (1940). Der Entwicklungsgang des Küstenfiebererregers in der Rinde und in der übertragenden Zecke. Archives für Protistenkunde 94, 156.Google Scholar
Reichenow, E., (1941). Zur Kenntnis des KüStenfieberregers der Rinder. Deutsche tierarztliche Wochenschrift 49, 546–7, 594–5.Google Scholar
Samish, M., (1977). Infective Theileria annulata in the tick without a blood meal stimulus. Nature, London 270, 51–2.CrossRefGoogle ScholarPubMed
Schein, E., (1975). On the life cycle of Theileria annulata (Dschunkowsky and Luhs, 1904) in the mid-gut and haemolymph of Hyalomma anatolicum excavatum (Koch, 1844). Zeitschrift für Parasitenkunde 47, 165–7.CrossRefGoogle Scholar
Schein, E., Büscher, G., & Friedhoff, K. T., (1975). Lichtmikroskopische Untersuchungen über die Entwicklung von Theileria annulata (Dschunkowsky und Luhs, 1904) in Hyalomma anatolicum excavatum (Koch, 1844). I. Die Entwicklung im Darm vollgesogener Nymphen. Zeitschrift für Parasitenkunde 48, 123–36.CrossRefGoogle Scholar
Schein, E., & Friedhoff, K. T., (1978). Lichtmikroskopische Untersuchungen über die Entwicklung von Theileria annulata (Dschunkowsky und Luhs, 1904) in Hyalomma anatolicum excavatum (Koch, 1844). II. Die Entwicklung in Hämolymphe und Speicheldrusen. Zeitschrift für Parasitenkunde 56, 287303.CrossRefGoogle Scholar
Schein, E., Warnecke, M., & Kirmse, P., (1977). Development of Theileria parva (Theiler, 1904) in the gut of Rhipicephalus appendiculatus (Neumann, 1901). Parasitology 75, 309–16.CrossRefGoogle ScholarPubMed
Till, W. M., (1961). A contribution to the anatomy and histology of the brown ear tick, Rhipicephalus appendiculatus Neumann. Memoirs of the Entomological Society of South Africa 6, 1124.Google Scholar
Warnecke, M., Schein, E., Voigt, W. P., Uilenberg, G., & Young, A. S., (1980). Development of Theileria mutans (Theiler, 1906) in the gut and the haemolymph of the tick Amblyomma variegatum (Fabricius, 1794). Zeitschrift für Parasitenkunde (in the Press).CrossRefGoogle ScholarPubMed
Young, A. S., Brown, C. G. D., Cunningham, M. P., & Radley, D. E., (1978). Evaluation of methods of immunizing cattle against Theileria lawrencei. In Tick-borne Diseases and Their Vectors, (ed. Wilde, J. K. H.), pp. 293–5. Edinburgh University, Centre for Tropical Veterinary Medicine.Google Scholar
Young, A. S., Grootenhuis, J. G., Kimber, C. D., Kanhai, G. K., & Stagg, D. A., (1977). Isolation of a Theileria species from eland (Taurotragus oryx) infective for cattle. Tropenmedizin und Parasitologie 28, 184–94.Google ScholarPubMed
Young, A. S., Grootenhuis, J. G., Smith, K., Flowers, M. J., Dolan, T. T., & Brocklesby, D. W., (1978). Structures associated with Theileria infection of eland erythrocytes. Annals of Tropical Medicine and Parasitology 72, 443–53.CrossRefGoogle ScholarPubMed
Young, A. S., & Leitch, B. L., (1980). A probable relationship between the development of Theileria species and the ecdysis of their host ticks. Journal of Parasitology (in the Press).CrossRefGoogle Scholar
Young, A. S., Leitch, B. L., & Omwoyo, P. L., (1979). The induction of infective stages of Theileria parva by exposure of host ticks to high temperature. Veterinary Record 105, 531–3.Google ScholarPubMed
Young, A. S., & Purnell, R. E., (1973). Transmission of Theileria lawrencei (Serengeti) by the ixodid tick Rhipicephalus appendiculatus. Tropical Animal Health and Production 5, 146–52.CrossRefGoogle ScholarPubMed
Young, A. S., Purnell, R. E., Payne, R. C., & Kimber, C. D., (1975). Correlation between the morphology and infectivity of Theileria lawrencei developing in the tick Rhipicephalus appendiculatus. Parasitology 71, 2734.CrossRefGoogle ScholarPubMed